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Abstract

Inductive  programming is  a  unique  area  of  Artificial
Intelligence  focused  on  the  task  of  Automatic
Programming; it  covers  broad areas of  Ai and software
architecture  to  accomplish  the  creation  of  logical
programs  from  incomplete  specifications.  Automatic
Programming  has  been  an  elusive  [0]  dream since  the
founding days of Ai [1A] with many sub-fields emerging
proposed  solutions,  including  statistical  optimization
methods, evolution inspired methods, and grammar based
methods.   Inductive  synthesis  of  finite-state  automata
started  in  the  1970's  [1B]  and  many  early  innovative
works  in  programming  were  fueled  by  the  desire  for
Automatic  Programming.  Interpreted  languages,  the
preprocessor,  automatic  compiler  optimizations,  object
oriented  programming,  shared  dynamic  libraries  and
modern IDEs are all descendants of the desire to automate
computer  programming.  In  this  regard  we  are  already
standing on the shoulders of giants.  The audacious goal
of this work is to explore “completing the loop” – to posit
an  intelligent  system  that,  given  a  short  description  of
input and desired output, can automatically author usable
software functions in a high-level programming language.

1. Introduction

The model and algorithm proposed in this work is an
early  and  experimental  novel  solution  towards  the
Automatic Programming of computer software using Deep
Learning.  Advances in Deep Learning [16] have recently
led to new models that achieve or surpass many state-of-
the art results in the areas of automated object recognition,
automated speech recognition, natural language processing
and machine translation; but as far as we know, have not
been recently applied to Automatic Programming [2] [3].

We  propose  a  hybrid  ensemble  method  consisting  of  a
framework  driven  by  several  “expert”  generative  Deep
Recurrent Neural Networks [9][10][11][12] trained to learn
logical sequence predictions, combined with  a generative
combinatorial  “trees and forests” method that distills  the
predictions  output  by  the  neural  networks  into  Abstract
Syntax  Trees  (AST).  AST simultaneously  represents  the
logical control flow graph while also disambiguating high-
level language syntax.  The Abstract Syntax Trees are then
stochastically  combined  at  compatible  leaf  and  branch
nodes using crossover and mutation with inspiration taken
from Genetic Programming [4] and Random Forest [5].  

2. Algorithm and Model Overview

At the onset of the generative process, the pre-trained
neural  networks  are  sampled  to  “imagine”  and  generate

high-level  source code predictions,  given  a short  textual
input description stating the desired function that should be
produced.  The neural  network's sequence predictions are
then  passed  through  a  feature  decoding  and  minor
grammar  enforcing  syntax  repair  process,  and  used  to
generate  a  variety  of  valid  Abstract  Syntax  Trees.  The
Abstract Syntax Trees (ASTs) are stochastically combined
into forests using crossover with “conform” mutations.  

Figure 1a.  Algorithm & Model (see Addendum 2a)
  
Tree-health heuristics are applied, the forest is pruned, and
then searched semi-exhaustively.  Heuristics used include
static  analysis,  function  validation,  compilation  of
object/machine  code,  and  finally  live  logical  execution
testing using a generalized method that is a combination of
a  logic  execution  length  timer  (in  milliseconds)  and  a
sequence  distance  heuristic  using  a  combination  of  the
Levenshtein Distance [6] and fast O(n) Ratcliff-Obershelp
[7] sequence matching method to test the generated output.

3. A Promising and Novel Method

The approach  of  building  forests  of  trees,  combining
and mutating the trees in a variety of ways, then ranking
tree  health,  and  keeping  the  healthiest  ones  is  directly
analogous to techniques from Random Forest and Genetic
Programming.   Despite  this,  we  believe  the  methods
proposed in this work are novel as combined parts to form
a whole;  and have also yielded surprisingly encouraging
experimental results in the automatic generation of small
python [8] functions. The results of the experiments will be
discussed in much more depth further; but the most notable
result (see Addendum 6a) was able to successfully generate
the square root function, generalizing logic that appears to
be functionally equivalent  to  Newton's  iterative  method!
This  same model  was  also able to  generalize  new math
functions such as    f(n)=n²    (see Addendum 7a).



4. Task Definition

The  task  of  building  the  Automatic  Programming
system described in this paper can be concisely stated as
follows:

Given  a  short  textual  description,  build  an
intelligent  system  that  can  generate  a  working
python  function,  using  only  the  textual
description as the system's input. 

For  purposes  of  specificity,  it  is  important  to  precisely
describe  the  content  of  the  textual  description  that  the
system  will  be  expecting  as  it's  input.  This  can  be
described as four independent (but related) statements:

Description        =    'very short description'

Definition          =    'def functionName( argument ):'

InputExample     =    ['any', 'input', 'data']

CorrectAnswer =    ['correct', 'output', 'data']

Given  the  above  textual  input,  it  is  the  role  of  the
Automatic  Programming system to  generate  a  complete,
usable python function using  Definition that will take
data  of  type  InputExample as  it's  argument,  and  then
transform  InputExample using  an  unknown  series  of
logical statements in python to perform computations that
will  generate  output  data  that  is  exactly  equal  to
CorrectAnswer. 

Since  the data  described  in  this  example  is  hypothetical
and purely for explanatory purposes, there does not exist
an interesting algorithm to transform this  InputExample
into  this  CorrectAnswer.  Despite  this  fact,  for
descriptive completeness, a valid output of the system in
this example would be:

def functionName( argument ):
return ['correct', 'output', 'data']

While  this  example  clearly  explains  the  task,  and  is
descriptive  in  regards  to  expected  inputs  and  outputs,
unfortunately the function generated contains no logic.  A
real-world running example would be much more useful,
which follows. 

4.1. Real World Running Example

While many strategies were attempted during the course of
this research, and many variety of experiments were run,
for the purpose of cohesive explanation, we will define a
real-world running example that is included in our results,
and will be referred to for the remainder of this paper.   

The running example is a real experiment that our system
ran  to  compute  the  square  root  of  a  number,  thus  will
further be referred to as the Square Root Example and can

be described using the previously stated four description
statements as follows:

Description          =    'square root'

Definition            =    'def square_root( num ):'

InputExample       =     262144

CorrectAnswer  =     512

The real world results output by the system can be fully
reviewed  in  Addendum  6a  and  Addendum  7a  but  for
purposes of completeness, here is one example of a valid
tested output function generated by the system:

def square_root(x):
    return math.sqrt(x) 

4.2. Scope

It  was  immediately  recognized  that  with  this  task,
problems of  tractability  could  quickly  become an  issue;
specifically  when  all  sequential  variables  are  left
unbounded.  While the design of the algorithm is meant to
help  solve  the  problem of  unbounded scope  (while  still
generalizing),  there  was  yet  more  to  consider  prior  to
starting the experiments. 

Considering the potential that the input description given
could  be  any  unknown  size  or  length,  and  contain  any
unknown number of words (presuming English language),
and  the  potential  that  the  data  types  and  number  of
arguments could be any length, or any type – the problem
of  tractability  became obvious,  along  with  the  need  for
limiting  scope.   See  Addendum 1a for  further  intuition,
notes and informal analysis of this problem's tractability.

Fortunately,  limiting  the  scope of  the  problem does  not
limit  the  interesting  results  of  the  experiments;  and  the
scope limitations applied were simple in practice.

Intentional restriction of scope:

i. No  function  larger  than  7  logic  statements  is
mutated by the “combinatorial” forest portion of
the  algorithm  (counting  logic  statements  is
achieved  prior  to  compilation  by  counting
variable assignments) 

ii. No more than  two words are  used  in  the  input
description statement (for example “square root”)

iii. The only functions considered are those that take
one variable (of any type) as an input, and then
return one variable (of any type) as an output

With  these  effective  scope  limitations  in  place,  the
remainder of the proposed methods remain unrestricted.



4.4. Dataset and Infrastructure 

After  some  exploration,  the  initial  strategy  of
using  data  acquired  by  GitHub  was  evaluated,  and
appeared to be the best possible approach for getting useful
data.    This  of  course  required  writing  a  robust  and
somewhat  “tricky”  time  consuming  (albeit  simple)  web
scraper to avoid GitHub's many numerous rate limits and
tricks to avoid getting the scraper's i.p. banned from their
servers.  The web scraping tool I wrote called  scraper.py
is included with the source code files.  It is used to search
GitHub for source code and then scrape all of the python
files it found.  Along those lines, the dataset is built is as
follows:

The terms defined in  Description which is defined as
“square root” using our running Square Root Example, is
sent into our GitHubScraper.   GitHub is then searched for
python files that contain the search terms.  Before GitHub
is searched, the GitHubScraper adds the terms “def” and
“return”  to  the  search  terms.   Then  GitHub is  searched
only for python source files.   This proved to be a highly
effective way to gather a focused, yet relatively diverse set
of source files guaranteed to include at least one function
that might use the return statement, along with the search
terms supplied by the user.  

How to invoke and use GitHubScraper as a python Class:

import scraper
gs = GitHubScraper()
gs.scrapeGitHubForCode(searchQuery, 

numPages, 
saveDir  )

The  average  source  code  scrape  (after  hitting  the
unavoidable GitHub limit of 1000 source files per query)
results usually in well over ~1,000,000 raw tokens to parse
through  by  the  feature  extractor,  and  in  our  running
example for  Square Root,  resulted in extracting 559,887
sequential  features  used for  training the Neural  Network
that produced the results in the Addendum.  After feature
extraction one single scrape results in a merged file size of
approximately  1.2  megabytes,  and  over  4,000  unique
expert focused variations of  functions for training. 

Both  the  scraper  and  the  feature  extractor  take  steps  to
minimize noise as well as reduce any unintended biasing
of  the  model.  For  example,  duplicate  source  files  and
duplicate  function  definitions  are  never  included,  and
functions  are  extracted  into  a  dataset  that  includes  only
Python functions.   Classes, local variables, and all other
random data outside top level python functions are handled
elegantly  by  the  feature  extractor,  converting  Class
methods into local functions in some cases, and discarding
data in others.

One final note regarding infrastructure: the baseline

algorithm   baseline.py   also uses the same GitHub
scraper  for  implementing  retrieval  of  baseline
examples; to be explained in more depth later. 

Figure 3a.  Git Hub Scraper Shell Options

4.3. Datasets Explored / Considered

As described, the initial intuition for gathering the datasets
used  in  these  experiments   was  to  utilize  source  code
scraped from Git Hub, and train expert models that learn
from  source  code  already  written  by  (hopefully)  expert
humans for a particular task.  Despite this initial intuition,
prior  to  writing  a  robust  scraper  for  scraping  GitHub
several other more immediate and seemingly robust dataset
options  were  downloaded  and  explored   during  the
exploratory phase of this research.   

First,  a  38.8GB  dump  of  all  forum  posts  from  Stack
Overflow. See Addendum 3a for more notes regarding the
Stack Overflow knowledge representation using EM and
LDA clustering  experimentation.  This  initial  strategy  of
mapping  knowledge  representation  to  source  code  was
ultimately discarded (despite it being a very promising and
viable idea I'd like to explore further).  There was just too
much noise / ambiguity in the results of the experiments
(and huge processing time); thus will not discussed further.

Another dataset considered was Python's own source repo
(including all user installed packages) which on a Linux
system is an incredibly simple task, with a short bash script
to  simply  merge  into  one  massive  training  file.   The
problem here was that, while this code is very well written,
it is not an expert at any one task, thus complicating the
process of feature extraction.  Also, searching through this
code-base  proved  less  fruitful  than  expected  as  many
functions are relatively low level and many make system
modifications that could be dangerous for system stability;
regardless  of  the  ability  to  easily  restrict  permissions
granted to the executing thread.

Finally, the source code dataset acquired by downloading,
installing and searching through all available pip packages
found by running the command  pip search *  was also
considered  and  immediately  discarded  after  seeing
numerous  questionable  package  names  such  as:  “crazy-
ball”, “artifacts”, and “blackhole”, just to name a few.



4.5. Evaluation

An important part of the algorithm is the evaluation and
scoring  of  the  AST  tree  health  after  mutating  tree
variations and building a collection of trees (which we will
refer to as a forest).  

First,  AST  mutations  that  will  not  compile  are
immediately pruned from the forest.   Since the AST are
direct representations of the functional programming logic
generated by the system, the scoring of the AST directly
maps  to  scoring  of  the  program code  generated,  as  the
algorithm  applies  transformations  between  these
representations  numerous  times  while  evaluating  the
output.  

While the most logical and natural evaluation metric is
accuracy,  running time is  also an important  factor.   The
following evaluation methods are used by function scoring
method to evaluate, score and sort the AST trees. First, the
Levenshtein  distance  as  an  approximation  of  error   e
(defined in Eq. 1a)

(Eq. 1a)

etru ,pred (t , p)={
max (t , p) if min(t , p)=0,

min{
etru , pred( t−1, p)+1
etru ,pred (t , p−1)+1
etru , pred( t−1, p−1)+1

(trut≠predp)

else .

Next, Ratcliff-Obershelp similarity (defined in Eq. 1b)

(Eq. 1b)

       ero(tru , pred)=
LCS( tru, pred)×2

|tru| + |pred|
 

Where  LCS  is  known  as  the  Longest  Common
Subsequence problem, defined as the following recurrence
(defined in Eq 1c)

(Eq. 1c)

LCS (t i , p j)={
0 if (i=0)∨( j=0)
LCS(t i−1 , py−1) if t i=p j

longest (LCS (t i , p y−1), LCS (t i−1 , p y)) if t i≠ p j

Finally, a measure of the evaluation heuristic is calculated
using  the  sum  of  the  Levenshtein  distance  with  the
normalized  Ratcliff-Obershelp  similarity  such  that:
(defined in Eq 1e)

(Eq. 1e)

error = etru, pred (|tru| , |pred|) + (1.0−
e ro(tru , pred)

|tru| )

Lastly, an approximation of the cpu clock cycles required
to  execute  the  function's  logic  is  stored  using  python's
built-in Timer mechanism with a carefully scoped call to
python's literal eval() function to evaluate the current run-
time  result  in  milliseconds,  which  is  also  added  to  the
Error heuristic for each function being evaluated.  If the
prior error was zero (prior to adding the execution time)
then an additional bit is set to True on an associative array
index, signaling this was a perfect function, so the forward
passing  results  can  still  be  sorted  and  prioritized  by
minimizing for the  fastest  perfect  function. 

It should also be noted the evaluation mechanism that runs
eval()  is  designed  to  timeout  after  a  certain  number  of
seconds.   Any AST that takes longer than this time (set to
5 seconds in these tests) is permanently discarded, and so
are all mutated variations of that function.  This effectively
removes ASTs that  contain flawed logic such as infinite
recursion or infinite loops.  

Examples of numerical output described by the equations
in  this  section  can  be  seen  in  the  results  shown  in
Addendum 5a, 6a, 7a , 7b , 7c, 7d   which is listed in column
two of each Addendum page, and is labeled as ERROR.

5. Approach

Besides the advanced approach, which has been described
thus far, there were also two other methods used during the
evaluation of experiments:  a baseline, and an oracle.  

5.1. Baseline

The purpose of the baseline is to replicate a simple solution
to this problem that, while not being perfect, already exists
and is fast and simple to run.  

The  baseline  algorithm  in  baseline.py used  for  these
experiments is meant to replicate the manual human search
process.   It  therefore  simply  runs  a  search  on  Git  Hub,
scrapes the first page's results, and randomly returns one of
functions contained from the first page's search results.  It
is very decidedly intelligent than a human, but mirrors the
manual  process  of  randomly  searching  for  code  on  the
internet in an acceptably accurate manner.



When executed three times, the baseline algorithm for our
Square  Root  experiment  returned  the  following  three
random results.  

Example 1a.  Three baseline square root functions:

def square_root(s):
i = 1
j = s
while (abs(j - i) > 0.001):
   print i, j
   j = (i + j) / 2.0
   i = s * 1.0 / j
return i

def square_root(x):
   return np.sqrt(x)

def square_root(a, x):
    y = (x + a / x) / 2
    return y

As  we  can  see  above,  unfortunately  all  three  of  our
baseline results are deceptively not square root functions
that  would  work  for  our  defined  problem,  despite  their
name, as  is  often the case when randomly searching for
source code on Git Hub – it almost never just works out-
of-the-box.  Thus, our baseline is acceptably modeling a
real-world experience. 

Problems with the three example baselines: 

The  first  baseline  example  returns  only  approximate
results. 

The second baseline presumptuously appears to require
the installation of  numpy while using an abbreviated
naming  convention  for  numpy that  would  not  even
work  out-of-the-box  if  numpy was  installed  and
imported. 

The third appears to intended as a utility function that
needs to be called iteratively. 

The first  baseline  is  particularly  interesting,  though,  not
only because it is an approximate solution, but specifically
because of it's near-similarity to several other square root
functions found in the training data, as well as it's logical
relationship to the function learned in Addendum 6a. 

5.2. Oracle

As mentioned, an oracle was also used to judge our results.
The purpose of the oracle is to know the exact best case
perfect  answer.   In  the case of the Square Root running
example, the oracle was simply:

math.sqrt( InputExample )

One of the best things about these experiments is that the

oracle for all (and any) experiment is actually very simple
to determine.  Since the goal of our system is to generate
python functions,  we can actually run a massively large
variety  of  experiments,  always  knowing  an  oracle,  by
simply choosing to run experiments for python scripts or
functions that already exist and produce known results.   

In  other  words,  the  oracle  for  learning  any  arbitrary
preexisting function is simply the function itself!  This is a
very encouraging attribute of this problem that I'm hoping
to  exploit  in  a  Reinforcement  Learning  framework  for
future work.

5.3. Advanced Method

As already introduced, the proposed model and algorithm
is  a  hybrid ensemble method consisting of  a  framework
driven  by  several  pre-trained  “expert”  generative
deep/recurrent  neural  networks  trained  on  libraries  of
source code.  The trained neural networks are sampled to
“imagine”  and  generate  data  (for  direct  source  code
predictions)  which  are  sent  through  a  feature  extraction
and minor syntax repair process, and then used to form a
variety  of  valid  Abstract  Syntax  Trees.  The  Abstract
Syntax  Trees  (AST)  are  stochastically  combined  into
“forests”  using  crossover  and  evaluated  in  a  semi-
exhaustive manner using evaluation heuristics to sort and
prune unhealthy trees. 

Figure 4a.  Reference, Tree Crossover

The  remaining  healthy  trees  are  transformed  back  into
python source code, round-tripping them one final time as
a checkpoint, and then passed into the compilation process,
and executed using the user supplied data.

The  output  of  the  logic  execution  process  is  evaluated
using the methods described in  section:  4.5 Evaluation,
and  then  scores  are  updated  and  the  trees  are  re-sorted
based on their  new scores – this process also inherently
results  in  a  pruning  process  of  a  variety  of  trees  that
contain logic flaws but trick the static analysis heuristics.
If any tree scores a zero error, it is marked as a successful



answer, and after evaluation is finished, is returned to the
user.

See Addendum 8a for a  representative example the trees
explored using our running Square Root example.

The delightful and surprising result of this process, when
neural networks are trained as experts on a domain specific
code  base,  is  a  model  and  algorithm  that  generate  a
multitude of valid, exact functions that accurately reflect
the  chosen  oracle,  and  can  also  generalize  (within  their
domain knowledge) to predict new oracles.  

5.4. Challenges, Unused Experiments

5.4.1 Challenges

There  were  many  challenges  encountered  during  this
research,  one  of  the most  challenging was  simply time!
The following real-world challenges were anticipated early
on,  and  were  in  fact  directly   encountered,  and  then
overcome  during  the  implementation  of  the  methods
described.  If  these  challenges  had  not  been  solved  to
acceptable levels, the results accomplished here would not
have been possible:

Scraping and cleaning sufficient  amounts  of stable open
source software.

Effective feature extraction of the source code.

Use of  additional  models  and  algorithms to reason with
this data.

Effectively constraining the complexity and search-space
so  as  to  generate  usable  general  solutions  within  a
reasonable execution time.  

Generating  source  code  candidates  that  can  be  safely
compiled and are syntactically correct  within the logical
programming  language  constraints,  and  are  also  human
readable  and  usable  for  practical  software  engineering
purposes.  

Creating a system that generalizes functional syntactically
correct, logically correct source code. 

Language  features  that  posed  specific  challenges  which
were  overcome in  a  variety  of  general  ways  during  the
feature extraction and/or generative prediction process:

• Untyped variables
• Dynamic variable type casting
• No return type in function definition
• Class methods
• Nested functions (functions inside of functions)
• Infinite Recursion and Infinite Loops

5.4.1 Unused Experiments

Numerous  experiments  were  performed  that  resulted  in
less  than  desirable  results,  some  of  which  have  already
discussed.   For purposes  of  completeness,  the  following
non-exhaustive list is supplied:

LDA knowledge clustering from Stack Overflow Post data
(documented in Addendum 3a)

Using Nervana's neon deep learning library with random
sampling to numerous additional generative RNN models
including both LSTM and GRU models trained on source
code data data 

Recurrent networks with 4, 5 and 6 layers including with
and  without  dropout,  as  well  as  numerous  ratios  of
test:training data during model training.

5.4.3 Specific Phenomena

To  discuss  specific  phenomena,  several  key  Python
language features are discussed and analyzed.

Consider  a  list  of  Python's  built-in  complex  keywords,
functions and operators as primary differentiable language
features that exist within a function definition:

python_keywords = ['and', 'as', 'assert', 'break', 'class',
'continue', 'def', 'del' 'elif', 'else', 'except', 'exec',
'finally', 'for', 'from', 'global' … 'vars', 'zip']

multi_char_operators = [ "==", ">=", "<=", "<>" ... "**" ]

Now,  consider  the  following  single  character  ASCII
symbol representations as a means to compress the python
logic sequence during an encoding process in the feature
vector, prior to deep learning:

ü é â ä à å Ä Å É æ Æ  ô ö ò û ù ÿ Ö º ┤ Á Â À © ╣ ║ ╗
╝ ¢ ¥  ┐ └  ┴ ┬ ├ ─ ┼ ã Ã ╚ ╔ ╩ ╦ ╠ ═  ╬ ¤ ð Ê Ë È 

As  an  example,  mappings  are  such  that  encoding  and
decoding can easily be done using a dictionary such as: 

keyword_map = {'and':u'Æ', 'as':u'É' ... 'class':u'Ã' }

Thus,  a  large  bulk  of  Python  2.7's  vocabulary  (besides
variables, logic flow and single-character operators) can be
encoded,  expressed  and  learned  in  ~100  dimensions  of
symbolic logic space.

There are several goals for feature extraction and learning
based on the observed phenomena outlined.  For one, we
wish  to  clearly  differentiate  symbolic  language  features
which  represent  logical  flow,  from things  like  language
variables  and  comments,  both  which  need  to  be
differentiable  as  an  important  aspect  for  accurately
learning sequence data.  



The goal is to exploit these facts as much as possible to
extract features which can be trained quickly, effectively
and as accurately as possible for code prediction.
  

5.4.4 A Note On Specific Phenomena of RNN Model

One-Hot vectors are used in the RNN LSTM model and
the  learned  language vocabulary  is  the  vector  space  for
each layer. Here is an example of a One-Hot, using python
operators as the features for purposes of clear explanation.
In  this  example,  for  simplicity,  we  show  an  eight
dimensional vector space to represent the one-hot:

 In practice, the actual vector space was much much larger,
dependent  on  the  size  of  the  total  language  vocabulary
used  and  the  encoding  methods  used  in  the  feature
extractor.

5.4.5 A Note On The Specific Phenomena of Grammar

Python has a very well defined language definition; like
most modern languages, Python uses Backus–Naur Form
grammar (BNF).  The BNF grammar definition is used by
Python's  compiler  to  enforce  source  code  syntax  and
grammar constructs.  Considering the language grammar is
so  clearly  well  defined,  and  can  be  directly  validated
through  the  compilation  process  (which  is  performed
numerous times in  our algorithm) it  should be possible,
given enough training data, for a model to learn all of the
grammar  rules  perfectly.  We  will  leave  this  for  future
work, but it is interesting phenomena to note. 

6. Data and Experiments

After a variety of tests and model / algorithm refinements,
the  following  real-world  experiments  were  performed.
Each  experiment  is  shown  here  using  the  established
conventions to describe the inputs given to the generative
algorithm,  as  previously  outlined  in  Section  4  Task
Definition.   Results listed for each experiment should be
reviewed in greater detail in Addendum 5a, 6a, 7a , 7b , 7c, 7d

Addendum 5a: 

Description  =   'sort'

Definition   =  '"def sort( seq ):"'

InputExample = [ 'll', 'gg', 'aa', 'jj', 'cc', 'ee', 
'hh', 'dd', 'p', 'o', 'm', 'bb', 
'kk', 'ff', 'n', 'ii', 'z', 'qq' ]

CorrectAnswer = ['aa', 'bb', 'cc', 'dd', 'ee', 'ff',
 'gg', 'hh', 'ii', 'jj', 'kk', 'll',

  'm', 'n', 'o', 'p', 'qq', 'z']

Addendum 6a, 7a:

Description        =    'square root'

Definition = '"def square_root( num ):"'

InputExample= 262144

CorrectAnswer = 512

The following three results contained in Addendum 7b 7c
and  7d  generalized  their  results  using  the  square  root
training data with no additional model or algorithm tuning:

Addendum 7b:

Definition = '"def squared( num ):"'

InputExample= 512

CorrectAnswer = 262144

Addendum 7c:

Definition = '"def half( num ):"'

InputExample= 512

CorrectAnswer = 256

Addendum 7d:

Definition = '"def double( num ):"'

InputExample= 512

CorrectAnswer = 1024

Operator  One-Hot

= 00000001

- 00000010

* 00000100

+ 00001000

> 00010000

< 00100000

. 01000000

/ 10000000



7. Analysis

7.1. Interpreting Results

To review and derive meaning from the results achieved,
browse the Addendum data included.   The first two most
interesting and encouraging results accomplished are that
first, in all cases the model was able to predict an answer
that is equivalent to the Oracle and second the model was
able to generalize to create new, related functions without
needing new training data (ie the model for “Square Root”
was  used  to  generalize  squared,  divide  by  two,  and  a
doubling function). 

While  this  all  seems  almost  unbelievably  impressive  at
first,  this behavior  is  certainly only possible due to  two
important attributes:  

1.  The  scope  limitations  previously  described
were effectively enforced (disallowing us to generalize the
current method to larger functions)

2. The “unreasonable effectiveness” of  the deep
recurrent  lstm  neural  network  was  made  even  more
effective  through  targeted  feature  extraction  combined
with highly focused “expert” training on the specific topic
that is wished to be learned (for example “square root”).  

While on the surface this may appear to be nothing more
than  a  simple  search,  it  is  very  promising  to  see  the
generalization  possible  even  in  these  early  preliminary
examples.

For the remainder of this section, we will use our running
example of Square Root,  since it  is  the most interesting
result achieved.  For additional results, please refer to the
Addendum.  The interpretation of results for  the Square
Root  example  should  generalize  to  all  other  results
currently possible with our system.

By  far,  the  most  impressive  result  can  be  seen  in
Addendum  6a  –  the  neural  network  appears  to  have
learned Newton's method for finding the square root of any
number:

def square_root(a):
    x = (a / 2.0)
    epsilon = 0.001
    while True:
        print x
        y = ((x + (a / x)) / 2)
        if (abs((y - x)) < epsilon):
            break
        x = y
    return x 

At first,  my assumption  was  that  this  was  due  to  over-

fitting; but after searching through all of the training data, I
realized it was definitely more of an interesting phenomena
caused by a combination of many variations of the same
functional  logic,  creating  a  statistical  bias  towards
predicting these unique sequences  – combined with the
absolute magical properties of deep neural networks.   My
best explanation of these results, after spending much time
analyzing the data and re-running several tests can be best
explained  by  the  multiple  re-occurrence  of  several
variations of the same, or a very similar variation of this
algorithm:

def square_root(a):
    x = a / 2.0
    y = x
    while True:
        y = (x + a / x) / 2.0
        if abs(y - x) < sys.float_info.epsilon:
            break
        x = y
    return x

def square_root(a):
    x = 10
    while True:

        y = (x + a / x) / 2
        if abs(y - x) < 0.000001:
            break
        x = y
    return x

def square_root(a):
    x = a / 2.0
    epsilon = 0.001
    while True:
        print x
        y = (x + a / x) / 2
        if approx_equal(y, x, epsilon):
            break
        x = y
    return x

def approx_equal(a, b, limit):
    if abs(a - b) < limit:
        return True

Presumably this phenomenon was caused by human beings
copy and pasting the function and then modifying it?  Or
perhaps just inherent logic contained within a function that
can  only  contain  a  restricted  number  of  combined  logic
sequences,  which  are  represented  enough in  the  data  in
order  for  the  neural  network  to  learn  them?  Now  that
would be really cool – and I think that's what has happened
here based on observation of the data.

Several  near  variations  existed  in  the  training  data,  but
there was nothing that  represented an exact  duplicate of
this function line for line!  There wasn't even a function
that had two lines in a row that were exact duplicates.



It appears the learning algorithm  generalized syntax and
logic  sequences  to  generate  a  generalization  of  this
complex function.  This was, in all honesty, a completely
unexpected and delightful result. 

Based on the results reported elaborated here, as well as in
great  detail  throughout  this  paper  and  further  in  the
Addendum, I can say with some level of confidence that
we  can  preliminarily  conclude  –  yes,  it  appears  it  is
possible for a Deep Recurrent Neural Network using Long
Short  Term  memory  gates  to  learn  the  sequence  data
needed for keyword prediction of logical source code – at
least  effectively  enough  for  the  output  to  be  sent  to
additional  search algorithms in order  to achieve exciting
and seemingly generalizable source code predictions.  

7.2. Error Analysis

 Since  this  is  a  multi-faceted  system  with  several
distinct  stages,  several  distinct  stages  of  error  analysis
were also performed. 

First,  test  error  was measured and attention was paid to
avoid  over  fitting  during  the  refinement,  tuning,  and
development  of  the  Deep  Recurrent  LSTM  Neural
Network  model  during  the  pre-training  process.    More
detail can be seen in Addendum 4a 

Next, Error measures of source code predictions at runtime
can be estimated using the previously described Section
4.5  Evaluation  –  but  first,  an  interesting  error  can  be
observed in the log files (supplied with the code and data
sets as part of the project).   

During the feature extraction used to decode the generative
neural  network  data  at  runtime,  a  certain  percentage  of
code is generated that is total garbage and can not pass a
simple  static  analysis  step.   The  way  to  identify  the
percentage  of  error  is  to  notice  the  percentage  of  data
skipped, as output by the log, during the feature extraction
process:

Percent: [                                                  ] 0%
Percent: [##                                                ] 3%
Percent: [###                                               ] 7%
Percent: [#####                                             ] 10%
Percent: [#######                                           ] 13%
Percent: [########                                          ] 17%
Percent: [##########                                        ] 20%
Percent: [############                                      ] 23%
Percent: [#############                                     ] 27%
Percent: [###############                                   ] 30%
Percent: [#################                                 ] 33%
Percent: [##################                                ] 37%
Percent: [####################                              ] 40%
Percent: [######################                            ] 43%
Percent: [#######################                           ] 47%
Percent: [#########################                         ] 50%
Percent: [###########################                       ] 53%
Percent: [############################                      ] 57%
Percent: [##############################                    ] 60%
Percent: [################################                  ] 63%
Percent: [#################################                 ] 67%
Percent: [###################################               ] 70%
Percent: [#####################################             ] 73%
Percent: [######################################            ] 77%
Percent: [########################################          ] 80%
Percent: [##########################################        ] 83%
Percent: [###########################################       ] 87%
Percent: [#############################################     ] 90%
Percent: [###############################################   ] 93%
Percent: [################################################  ] 97%

This is  ascii  data is  an interesting artifact  of  the feature
extraction progress reporting mechanism after redirecting
standard output into a text file for documentation purposes
– regardless,  it  is  a  very interesting error  rate  to notice.
This is theoretically an error that represents total noise in
the model, since it is outputting data that was previously
successfully learned using the feature extractor but when
sampled,  can  not  be  processed  by  the  feature  extractor.
This error range is reasonably low, ranging between 2% to
4% depending on the data and samples  requested  – but
could  be  an  area  to  explore  as  a  window to  improving
overall  predictions.   Finally,  Error  measures  using  the
Section  4.5  Evaluation  heuristics  are  analyzed.    Since
approximate execution time is inherently included in these
scores, it is important to understand the meaning of these
approximate Errors scores – these are scores representing
the errors of syntactically valid functions that contain some
logic flaw causing them to return imperfect data.  
   
Addendum 5a Max Sampled Error: ~110

Addendum 6a, 7a Max Sampled Error:  ~15

Addendum 7b Max Sampled Error:  ~20

Addendum 7c Max Sampled Error:  ~12

Addendum 7d Max Sampled Error:  ~15

It's interesting to notice that the maximum sampled error
decreases with the size complexity of the required output.
This makes sense, even though the error metrics can not be
directly compared as they are not normalized – the lower
error rates represent shorter sequence data being compared,
and  in  practice,  with  our  data  used,  does  represent  less
actual error despite the lack of normalization.

Also note that this is an estimation of error and not exact
error – thus meaning that there is some measure of error
contained  in  the  method  used  to  measure  error.   The
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primary problem with the current sequence edit-distance
and  sequence  matching  based  error  metric  is  that  it
serializes all data into string prior to comparison.  This is
robust  to  many  cases  that  occur  in  real  world
circumstances,  such  as  comparison  of  sequential  data  of
different  data  type  (thus  effectively  handling  dynamic
variable typing and variable type mutations).   This method
is  flawed  in  the  very  simple  example  of  measuring  the
distance  between  a  two  floating  point  numbers  such  as
comparing  the  number  1.0 with
1.000156347677462437631.   While  this  is  a  very
small  true  distance,  the  error  measured  by  the  current
method results in an error approximately greater than 20!
This  would  definitely  result  in  the  wrong  optimization
results  in  several  circumstances  –  but  of  course  this
problem is easily correctable;  yet  it  is  worth mentioning
because it currently exists in this experimental, imperfect
implementation of our proposed method.

8. Literature and Attributions Review

While  much  interesting  literature  on  sequence  learning,
automated  programming,  modern  software  architectures,
and a variety of other topics in artificial intelligence and
other  fields  that  create  software  designed  to  create
software,  nothing  was  found  that  solves  the  specific
problem  as  proposed  –   i.e.  using  Deep  Learning  for
Inductive Programming.

There are many pieces of literature that could be discussed
and  elaborated  upon  in  this  section  (see  section:
References),  there  are  three  primary  areas  worth
mentioning,  or  further  discussing in  detail.   One area is
Genetic Programming, the next is Inductive Programming,
and the last  are two specific papers [11] and [13] along
with a blog post and open source library that are definitely
of high importance, and are discussed last.

First,  while  researching  methods,  many  papers  on  the
topics  of  Genetic  Programming  were  reviewed  (far  too
many to cite, so Koza's pioneering work is cited for this
domain  [4]).    As  mentioned  numerous  times,  Genetic
Programming was a source of reference for the project and
implementing  more  features  from  Genetic  Programming
paradigm is something planned for future work; it is worth
mentioning in this section but probably worth discussing in
further detail here.

Second,  a  large  number  of  papers  on  Inductive
Programming were  reviewed (the best one is a survey and
is cited [2]).   It is interested in to note that in [2] the author
contrasts  Inductive  Programming  with  Neural  Networks
models in  a  competing context,   rather  than considering
them as a generative method for Inductive Programming.
This is most likely due to the major strides in progress that
Neural Network models have made recently, as this paper
was from 2010 – regardless, this was an interesting thing
to  note,  especially  since  there  is  literature  from  the
Inductive  Programming  sub-field  [3]  “Learning  Logic

Programs with  Neural  Networks”  from 2001,  where  the
authors leave the first-order theory refinement using neural
networks as an open problem.

Lastly, and most importantly – there were two papers that
were  published  approximately  within  the  last  year  that
were particularly inspiring for this work:

Zaremba, Wojciech, and Ilya Sutskever. "Learning to execute."
arXiv preprint arXiv:1410.4615 (2014).

The learning to execute paper was a very large motivator
for approaching this problem.  The LSTM neural network
model used in these experiments is exactly the same model
as was used in the learning to execute paper.  The primary
difference between the learning to execute approach, and
our approach, is that Learning to execute tries to solve the
problem of predicting the result  of executing a function,
given sequences of logic – in other words, it is trying to
predict the results of that compiled execution will generate,
given source code.   Where as our approach trains a model
to predict  the  source  code,  this  paper  trains  a  model  to
predict the source code's compiled results.  Of course the
two  have  much  in  common,  and  could  be  looked  at
interchangeably,  the  utility  of  the  results  differs
dramatically.  Further, our model and process includes the
additional  AST  mutation  process  as  described  whereas
Learning to  execute  attempts  to  solve  the  problem with
only Deep Learning. 

It  has  been  widely  speculated  and  discussed  in  recent
literature and within the deep learning community (and is
informally accepted  as  true)  that  a  finite-sized  RNNs is
Turing  complete  –  despite  there  also  being  an  apparent
lack of formal proof that this is true.  In fact this idea was
one  of  motivations  behind  the  research  that  has  been
presented in this paper.  The following literature was very
exciting in this regard:

Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural Turing
Machines." arXiv preprint arXiv:1410.5401 (2014).

Further,  there is an incredibly great  blog post by Andrej
Karpathy  titled  “The  Unreasonable  Effectiveness  of
Recurrent  Neural  Networks”  where  he  uses  the  Linux
kernel source (amongst many other examples) to train an
LSTM:

Karpathy, Andrej. "The Unreasonable Effectiveness of 
Recurrent Neural Networks." Hacker's Guide to Neural 
Networks. N.p., 21 May (2015). Web.

Andrej Karpathy deserves extra mention here, because not
only  was  his  blog  post  excellent,  his  lua  /  torch  based
LSTM  RNN  library  produced  the  best  results  in  my
experiments, and his library was ultimately used to build,
train and create the generative neural network used in this
paper,  which  implemented  the  RNN  model  used  in  the
Learning to execute paper.    If  you see Andrej,  tell him
thank you for his excellent open source contributions! 



The following paper has not yet been published but it looks
incredibly  interesting  and  valid  –  I  discovered  it  while
working  on  these  experiments,  and  have  not  yet  had  a
chance to fully read and digest  it  but am planning to as
soon as possible:

[15] Zaremba, Wojciech, and Ilya Sutskever. "Reinforcement 
Learning Neural Turing Machines." arXiv preprint 
arXiv:1505.00521 (2015).

9. Limitations and Future Work

Despite these isolated successful results, it is the strong
feeling of the author that the approaches proposed herein,
albeit powerful and exciting, are in their most infant form;
and  there  is  yet  much  work  to  be  done  to  explore,
experiment and develop a fully realized system with this
approach

The  current  implementation  of  the  algorithm  is  lacking
several  planned  capabilities  (such  as   ϵ-greedy  search
using source code created from random generative BNF
grammar)  –  these  capabilities  were  initially  excluded
during  practical  implementation  for  the  purposes  of
controlled  experimentation;  and  while  this  capability
would still  be a great  feature to add, in the experiments
presented here,  random search outside of the knowledge
learned by the deep neural network does not appear to be
needed!   Only  the  leaves  and  branches  the  functions
predicted by the neural  network were used to create the
AST forest.  There is much refinement that could be added
to this part of the model, including modeling the steps as a
Markov Decision Process for Reinforcement Learning of
generalizing successful code mutation decisions to further
reduce the number of mutations created in the tree to forest
process. 

It would also be desirable to experiment with extending the
forest  model  with  a  full  Genetic  Programming
implementation that can run as a stop-gap mechanism if no
solution is found, similar to the idea of using an epsilon
greedy search method to introduce random branches into
the search process when needed.

Finally,  the  most  important  planned  work  includes
exploring more advanced RNN models such as attention
based deep RNN models that are currently achieving state-
of-the-art in Machine Translation, and apply them to the
sequence  prediction  problem  for  more  robust  code
prediction.  Ultimately,  the  goal  is  to  build  the  entire
framework  as  a  Markov  Decision  Process  and  use
Reinforcement Learning with a hybrid of Deep Q Learning
and the Tree / Forest and Genetic Programming techniques
already  discussed.   Once  that  is  stable,  the  plan  is  to
attempt to train a very large ensemble of fuzzy experts that
can accurately learn all known available Python functions,
language  grammar,  and  syntax  as  the  end  game.   That
would be a truly incredible accomplishment.  
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ADDENDUM 1  a

Notes on:
Computational Tractability for a Theoretically NP Hard Problem

The general problem of finding an arbitrarily large function in an arbitrarily large sequential symbolic 
space with little to no knowledge of which operations to perform is undoubtedly an NP hard problem.  
If the symbols used to build the function are restricted to some known dimensionality, this reduces the 

problem to an knowable NP problem as this can be veritably computed in O(ns) time complexity 
where N are the total number of operations the function performs and s is the total number of all 
arbitrary operations that can be performed sequentially (i.e. total number of all possible sequential logic
combinations existing, such as: variable assignments, condition statements, function calls, etc).  

The algorithm implemented herein, which was used to search and find the functions as noted in the 
results (sort, square root, etc) had the space constrained in a variety of ways.  First, it was limited 
through focused learning and training with a neural network, trained on a data set that had a very high 
probability of containing an answer based on  rudimentary keyword search of the user's intent.  Second,
the algorithm used a variety of semi-exhaustive but not fully complete random / shuffled permutations 
and restricted Cartesian product combinations to find (and eliminate) variable and function 
combinations (effectively limiting k) as well as added heuristics for scoring functions so that functions 
with less error are searched first, all to make finding a solution tractable.  

Without employing such methods, an exhaustive unbounded search of logic sequences even within the 

constraints of 11 logical sequences results in a worst case brute force search expansion of O(nn)
where n is the number of logical operations expanded to 1111  combinations; over 285.3 billion 
sequential search operations.  The resulting computational resources required for this exhaustive naive 
approach appear to be sub-quadratic in a real-world test case as can be seen below, yet still uses an 
unacceptable amount of compute resources. This experiment was killed just before physical memory 
limits of 32GB hit, at peak CPU usage (64 bit Linux, 8 processors @ 4.00Ghz) after only about ~1 
minute of computation (as shown in diagram below, a real screen capture of computational resources 
utilized while running this first test).  

Thus, an approach to circumvent and begin to solve this issue of intractability was devised herein. 



ADDENDUM 2  a

Algorithm and Model Overview (larger view format)

The pre-trained Neural Networks are serving a dual purpose: both as intelligent symbolic logic 
sequence predictors, as well as effectively limiting the dimensionality of the AST's potentially 
otherwise very large unknown possible logical tree powerset search space. 

See diagram below for overview of the proposed run-time (after pre-training) generative process:



ADDENDUM 3  a

Exploration  : Stack Overflow for “Expert Code Topic” Knowledge Clusters
Using EM based clustering with Latent Dirichlet Allocation 

An initial idea to build the learning model from data was to map clusters of knowledge onto clusters of code and 
then use those mapped clusters to train a fuzzy ensemble of RNNs.  Thus, LDA clustering of domain expert 
knowledge was explored for potential identification of concentrated expert topics / domain knowledge that could
be used to search, scrape and train clustered ensembles expert “coder” generative deep neural networks.  I was 
looking for a way to automatically map the vast knowledge of the Stack Overflow domain to raw source code.  
The S.O. domain data (+38.8GB of posts) was parsed (to remove xml tags and sematic stop words) and was then
tokenized and statistically explored. It proved quite interesting but too noisey and very time consuming.  Below, 
a visualization of  a batch of semantic knowledge clusters I trained can be seen (zoom in):

Note on above image: I used python and the gensim library with sent2vec and doc2vec along with nltk, sklearn
and matplotlib to produce the clustering and visualization. After building a custom corpus and training the LDA 
model, I followed suggestion in the nltk library to use PCA first to reduce the multidimensional clusters to ~50 
dimensions, then used TSNE to further reduce it to 2 dimensions before then showing the scatter plot as plt data. 

Conclusion: While this exploration process proved very informative, the semantic data space was very huge, 
and quite noisey and thus implementation of an automatically trained ensemble of deep domain expert 
generative neural networks derived from this data will be left for exploration in future work once the knowledge 
space to domain space mapping is more well understood.  I do believe there is a viable solution to be found here.



ADDENDUM 4  a

Training: Deep LSTM Neural Network Test Prediction Error per Training Epoch
(using 10% of training data as test data)

Prior to tuning parameters and layers of RNN model:

After experimentation, adding more data, tuning parameters of the model & increasing number of layers:
Final acceptable test error of deep recurrent models fell between ~0.2 and ~0.4 for different datasets

0

0.5

1

1.5

2

2.5

3

3.5

4

Error

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Error



ADDENDUM 5  a   Results:  sort (part1)

Successful 
(0 error, passed user supplied test 
data)
Oracle=  [].sort()
Interesting valid functions constructed
successfully performing the sort 
operation

Unsuccessful
(error >0, failed user supplied test data)

Some interesting syntactically valid (but 
unsuccessful / logically flawed) functions 
constructed

def sort(a):
    return sorted(a)

def sort(alist):
    return sorted(alist)

def sort_by_name(my_class):
    a = sorted(my_class)
    return a

def __str__(sequence):
    return sorted(sequence)

def toSort(alist):
    return sorted(alist)

def sort_by_mark(my_class):
    return sorted(my_class)

def sort_files(seq):
    return sorted(seq)

def sort(array):
    '\n    Argument ant listTon 
sorted countting ore'
    return sorted(array)

def sort(lod):
    return sorted(lod, key=(lambda x: lod[1]), 
reverse=True) 
[AN ERROR OF:  40.9223300971 ]

def bubble_sort(sorted_list):
    for i in range(1, len(sorted_list)):
        sorted_list = sorted_list
        return sorted_list 
[AN ERROR OF:  40.9223300971 ]

def sort_by_name(l):
    return sorted(l, reverse=True) 
[AN ERROR OF:  44.640776699 ]

def pop(self):
    return self.pop() 
[AN ERROR OF:  108.252336449 ]

def __repr__(self):
    return 'Sorted' 
[AN ERROR OF:  109.459459459 ]

def merge(right):
    SortedList = []
    (-1)
    if (len(right) <= 1):
        return i[0] 
[AN ERROR OF:  110.626168224 ]

def sort_by_name(k):
    return 
[AN ERROR OF:  110.626168224 ]



ADDENDUM 5  b   Results:  sort (part 2)

Examples of non-mutated (and) discarded functions
Examples of valid functions the algorithm constructs, validates, then parses, forms into an 
Abstract Syntax Tree, deconstruct into independent variables,  and then recognizes the presence 
of “long” logic sequences (a variable length currently set to no greater than 7) during the 
combination process, and skips combining / mutating for these functions in order to achieve 
tractability.  These long logic sequence functions are not discarded entirely, just not combined:

Example one contains multiple functions inside of functions (and logic errors):

def sort_by_mark(my_class):
    alist = sorted(items, key=(lambda l: lea((lambda : x))))

    def sort(self, sorted_items):
        return sorted_items.heappop() 

Example two, contains loops with nested conditional branching (and logic errors):

def insertionSort(array):
    for i in range(1, right):
        if ((len(left) > 0) and (len(right) > 0)):
            if (left[i] < right[0]):
                sorted_stack.append(c)
            else:
                return False 



ADDENDUM 6  a   Results: square root (part 1)    (***wow!)
Here's one of the coolest examples of a valid formed function (with low error) that failed the exactness 
of the final test, but resulted in a truly surprising result:  The deep recurrent lstm neural network 
appears to have learned Newton's method for finding the square root of any number!

def square_root(a):
    x = (a / 2.0)
    epsilon = 0.001
    while True:
        print x
        y = ((x + (a / x)) / 2)
        if (abs((y - x)) < epsilon):
            break
        x = y
    return x 
[AN ERROR OF:  21.0001101494 ]

When this function is tested, it actually prints it's results along the way, to my astonishment:

square_root( 262144 )
65537.0
32770.4999695
16389.2496796
8202.6222773
4117.29041888
2090.47973814
1107.93935264
672.272180594
531.104741066
512.343615019
512.000115227
512.0001152266542

Note: At first, my assumption was that this was rote learned; but after searching through all of the 
training data, while several near variations existed, it wasn't possible to find an exact duplicate of this 
function line for line!   It appears the learning algorithm generalized syntax and logic sequences here!

Newton's method?!   The above code appears to be something equivalent to or very similar to 
Netwton's iterative method for solving the square root of any number via recurrence.  While the learned
function is not recursive, it's logic is equivalent to a recurrent function. Wolfram Alpha defines 
Newton's iteration as an application of Newton's method using recurrence that converges quadratically 
as limk→∞ x k  and is defined as follows:

x k+1=
1
2
(xk+

n
xk

)

This very closely mirrors the function learned by the neural network!



ADDENDUM 7  a   Results*: square root (part 2)

 Successful !
(0 error, passed user supplied test data)
Oracle =  math.sqrt
Interesting valid functions constructed 
successfully performing square root.  
 * Read the doc-string of that last one!  The 
Ai is trying to tell us something very deep :-)

Unsuccessful
(error >0, failed user supplied test data)

Some interesting syntactically valid (but 
unsuccessful / logically flawed) functions 
constructed.  Look at the one that raises 
an exception (it is valid logic!):

def cube_root_improve(a):
    return math.sqrt(a) 

def square_root(x):
    return math.sqrt(x) 

def root_mean_square(a):
    return math.sqrt(a) 

def find_sqrt(x):
    "\n    Avime square root is the positive 
integers, whine float an the square root is to 
be computed.\n    Returns:\n        The square 
root of x.\n    '''\n    assert x >= 0, 'x must 
be non-negative, not' + str(x)\n    assert 
epsilon > 0, 'epsilon must be positive, not' + 
str(epsilon)\n    low = 0\n    high = max(x, 
1.0)\n    guess = (low + high) / 2.0\n    ctr = 
1\n    while abs(guess ** 2 - x) > epsilon and 
ctr <= 100:\n        if guess ** 2 < x:\n       
low = guess\n        else:\n            high = 
guess\n        guess = (low + high) / 2.0\n     
ctr += 1\n    assert ctr <= 100, ''\n    print 
'The square root excain boof tepsicance the 
square root of the first matrinuge hen 
eloghacis:\n        The square root of x.\n    
'''\n    assert x >= 0, 'x must be non-negative,
not' + str(x)\n    assert epsilon > 0, 'epsilon 
must be positive, not' + str(epsilon)\n    low =
0\n    high = max(x, 1.0)\n    guess = (low + 
high) / 2.0\n    ctr = 1\n    while abs(guess **
2 - x) > epsilon and ctr <= 100:\n        if 
guess ** 2 < x:\n            low = guess\n      
else:\n            high = guess\n        guess =
(low + high) / 2.0\n        ctr += 1\n    assert
ctr <= 100, 'Iteration count exceeded'\n    
print 'Bi method format.\n    >>> from 
pyromaths.classes.SquareRoot import SquareRoot\n
>>> SquareRoot([5, 8], [1, 
45]).EstReductible()\n    False\n    >>> 
SquareRoot([5, 8], [1, 7]).EstDecomposable()\n  
False\n    :rtype: int\n    "
    return math.sqrt(x) 

def subtract(a):
    return (a - a) 
[AN ERROR OF:  13.0000779629 ]

def dist(s):
    x = (s ** s)
    return 0 
[AN ERROR OF:  13.0116910934 ]

def square_root(a):
    x = (True / 2.0)
    while a:
        return 
[AN ERROR OF:  14.0000739098 ]

def is_square(n):
    root = int((n ** 0.5))
    return (n == int(root)) 
[AN ERROR OF:  15.0001130104 ]

def fib(n):
    if (n < 0):
        raise ValueError('square root not
defined for negative numbers')
    n = int(n)
    if (n == 0):
        return 1 
[AN ERROR OF:  14.0001008511 ]

def convergents(sequence):
    if int(True):
        return True 
[AN ERROR OF:  14.0000879765 ]

*See all results that were echo'ed in the shell in the file supplied with code:
square_root_ouput_log.txt



ADDENDUM 7  b   Results*: squared   (generalized from square root training data!)
Successful 
(0 error, passed user supplied test 
data)
Oracle = **2
All valid functions successfully 
generalizing from square root 
training data to create “squared” 
functions!  

*Again, cool yet strange doc-string! 

Unsuccessful
(error >0, failed user supplied test data)

Some interesting syntactically valid (but 
unsuccessful / logically flawed) functions 
constructed

def multiply(a):
    return (a * a) 

def df(x):
    return (x ** 2) 

def dor_(x):
    return (x ** 2) 

def cubeRoot(n):
    'Determines if n is arrayyyicce 
digital number'
    return (n * n) 

def cube_root_iter(guess):
    return average(guess, (guess - guess)) 
[AN ERROR OF:  11.3637112271 ]

def improve(guess):
    return average(guess, (float(guess) / 
guess)) 
[AN ERROR OF:  11.3637133728 ]

def square(number):
    return (number ** 1) 
[AN ERROR OF:  12.7778776752 ]

def isSquare(n):
    root = int(math.sqrt(n))
    if ((root * root) == n):
        return True 
[AN ERROR OF:  16.0000619888 ]

def square_root(x):
    return math.sqrt(x) 
[AN ERROR OF:  20.6667386691 ]

*See all results that were echo'ed in the shell in the file supplied with code:
 squared_ouput_log.txt



ADDENDUM 7  c   Results*: double  (generalized from square root training data!)
Successful 
(0 error, passed user supplied 
test data)
Oracle = *2
This time three functions were 
created.  Interestingly they all 
perform the add operation and
none multiply by two, which I 
had (arbitrarily) designateed 
as the Oracle.

Again, this was generalized 
from the square root training 
data! 

Unsuccessful
(error >0, failed user supplied test data)

Again, many very interesting syntactically valid 
(logically flawed) but really intriguing functions 
constructed:

def add(x):
    return (x + x) 

def df(x):
    return (x + x) 

def multiply(x):
    return (x + x) 

def triangle_rms(a):
    '\n    Returns L2 norm of the given matrix (while 
petate-1.\n    >>> square_root = int(4 ** 2\n    '
    if (a < 0):
        raise ValueError('square root not defined
for negative numbers')
    r = int(a)
    return a 
[AN ERROR OF:  7.28584708486 ]

def in_thas_inverse(can):
    for can in xrange(1, 1001):
        can += 1
    return (can ** 0) 
[AN ERROR OF:  9.00008010864 ]

def iterate(x):
    return average(x, (float(x) / x)) 
[AN ERROR OF:  12.7778478728 ]

*See all results that were echo'ed in the shell in the file supplied with code:
double_ouput_log.txt



ADDENDUM 7  d   Results*: half   (generalized from square root training data!)
Successful 
(0 error, passed user supplied test 
data) 
Oracle = /2
This time only two functions were 
created, (clearly mutations of the 
same imagined function) but again, 
this was generalized from the square
root training data! 
Syntax is a bit unusual but is valid 
and is also equivalent to the oracle!

Unsuccessful
(error >0, failed user supplied test data)

Again, many very interesting syntactically 
valid (logically flawed) but really intriguing 
functions constructed:

def newpondix(y):
    return ((+ y) / 2) 

def newpondix(x):
    return ((+ x) / 2) 

def add(a):
    return (+ a) 
[AN ERROR OF:  9.66671983401 ]

def half(True):
    if is_prime(True):
        return True 
[AN ERROR OF:  14.0000519753 ]

def is_prime(n):
    'Finds a primitian une prime or 
close nimger\n    :param errors: a 
number '
    if (n == 0):
        x = (n + 1.5)
    return (+ 1) 
[AN ERROR OF:  13.0000519753 ]

def squareRoot(file):
    return (None is None) 
[AN ERROR OF:  14.0000519753 ]

def improve(up):
    return (math.factorial(up) == 
math) 
[AN ERROR OF:  15.00009799 ]

*See all results that were echo'ed in the shell in the file supplied with code:
half_ouput_log.txt



ADDENDUM 8  a

Representative examples of ASTs during the “Combinatorial Forest” portion of the generative 
algorithm.  A large variety of Abstract Syntax Trees are created indiscriminately for the initial 
AST “forest” exploration process. Varying degrees of health are assigned to the trees during the 
combination, mutation and selection process.  

Note that the current algorithm supports the creation of combinations and mutations of many multiples 
of functions all with the simultaneously with the same function name declaration.  This was achieved 
through careful scoping during compilation process as well as targeted creation / deletion of code 
objects: 

Infinitely unhealthy, this tree was
eliminated completely by

algorithm's infinite loop detection
and by the execution time scoring

component:

Midly unhealthy, this tree is
down-scored early during

scoring and later permanently
discarded:

Very healthy, this tree very
efficiently computes the

desired result, and actually
generalizes by using the

Oracle  to do so!

def square_root(a):
    x = (a + 0.01)
    while True:
        if (True == 0):
            return 0

def square_root(a, x):
    if (x == 0):
        return 0

def square_root(x):
    return math.sqrt(x) 
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