
Automatous Source Code Generation for Inductive Programming

Erick Miller
emill@stanford.edu

Abstract

Inductive programming is a unique area of Artificial
Intelligence focused on the task of Automatic
Programming; it covers broad areas of Ai and software
architecture to accomplish the creation of logical
programs from incomplete specifications. Automatic
Programming has been an elusive [0] dream since the
founding days of Ai [1A] with many sub-fields emerging
proposed solutions, including statistical optimization
methods, evolution inspired methods, and grammar based
methods. Inductive synthesis of finite-state automata
started in the 1970's [1B] and many early innovative
works in programming were fueled by the desire for
Automatic Programming. Interpreted languages, the
preprocessor, automatic compiler optimizations, object
oriented programming, shared dynamic libraries and
modern IDEs are all descendants of the desire to automate
computer programming. In this regard we are already
standing on the shoulders of giants. The audacious goal
of this work is to explore “completing the loop” – to posit
an intelligent system that, given a short description of
input and desired output, can automatically author usable
software functions in a high-level programming language.

1. Introduction

The model and algorithm proposed in this work is an
early and experimental novel solution towards the
Automatic Programming of computer software using Deep
Learning. Advances in Deep Learning [16] have recently
led to new models that achieve or surpass many state-of-
the art results in the areas of automated object recognition,
automated speech recognition, natural language processing
and machine translation; but as far as we know, have not
been recently applied to Automatic Programming [2] [3].

We propose a hybrid ensemble method consisting of a
framework driven by several “expert” generative Deep
Recurrent Neural Networks [9][10][11][12] trained to learn
logical sequence predictions, combined with a generative
combinatorial “trees and forests” method that distills the
predictions output by the neural networks into Abstract
Syntax Trees (AST). AST simultaneously represents the
logical control flow graph while also disambiguating high-
level language syntax. The Abstract Syntax Trees are then
stochastically combined at compatible leaf and branch
nodes using crossover and mutation with inspiration taken
from Genetic Programming [4] and Random Forest [5].

2. Algorithm and Model Overview

At the onset of the generative process, the pre-trained
neural networks are sampled to “imagine” and generate

high-level source code predictions, given a short textual
input description stating the desired function that should be
produced. The neural network's sequence predictions are
then passed through a feature decoding and minor
grammar enforcing syntax repair process, and used to
generate a variety of valid Abstract Syntax Trees. The
Abstract Syntax Trees (ASTs) are stochastically combined
into forests using crossover with “conform” mutations.

Figure 1a. Algorithm & Model (see Addendum 2a)

Tree-health heuristics are applied, the forest is pruned, and
then searched semi-exhaustively. Heuristics used include
static analysis, function validation, compilation of
object/machine code, and finally live logical execution
testing using a generalized method that is a combination of
a logic execution length timer (in milliseconds) and a
sequence distance heuristic using a combination of the
Levenshtein Distance [6] and fast O(n) Ratcliff-Obershelp
[7] sequence matching method to test the generated output.

3. A Promising and Novel Method

The approach of building forests of trees, combining
and mutating the trees in a variety of ways, then ranking
tree health, and keeping the healthiest ones is directly
analogous to techniques from Random Forest and Genetic
Programming. Despite this, we believe the methods
proposed in this work are novel as combined parts to form
a whole; and have also yielded surprisingly encouraging
experimental results in the automatic generation of small
python [8] functions. The results of the experiments will be
discussed in much more depth further; but the most notable
result (see Addendum 6a) was able to successfully generate
the square root function, generalizing logic that appears to
be functionally equivalent to Newton's iterative method!
This same model was also able to generalize new math
functions such as f(n)=n² (see Addendum 7a).

4. Task Definition

The task of building the Automatic Programming
system described in this paper can be concisely stated as
follows:

Given a short textual description, build an
intelligent system that can generate a working
python function, using only the textual
description as the system's input.

For purposes of specificity, it is important to precisely
describe the content of the textual description that the
system will be expecting as it's input. This can be
described as four independent (but related) statements:

Description = 'very short description'

Definition = 'def functionName(argument):'

InputExample = ['any', 'input', 'data']

CorrectAnswer = ['correct', 'output', 'data']

Given the above textual input, it is the role of the
Automatic Programming system to generate a complete,
usable python function using Definition that will take
data of type InputExample as it's argument, and then
transform InputExample using an unknown series of
logical statements in python to perform computations that
will generate output data that is exactly equal to
CorrectAnswer.

Since the data described in this example is hypothetical
and purely for explanatory purposes, there does not exist
an interesting algorithm to transform this InputExample
into this CorrectAnswer. Despite this fact, for
descriptive completeness, a valid output of the system in
this example would be:

def functionName(argument):
return ['correct', 'output', 'data']

While this example clearly explains the task, and is
descriptive in regards to expected inputs and outputs,
unfortunately the function generated contains no logic. A
real-world running example would be much more useful,
which follows.

4.1. Real World Running Example

While many strategies were attempted during the course of
this research, and many variety of experiments were run,
for the purpose of cohesive explanation, we will define a
real-world running example that is included in our results,
and will be referred to for the remainder of this paper.

The running example is a real experiment that our system
ran to compute the square root of a number, thus will
further be referred to as the Square Root Example and can

be described using the previously stated four description
statements as follows:

Description = 'square root'

Definition = 'def square_root(num):'

InputExample = 262144

CorrectAnswer = 512

The real world results output by the system can be fully
reviewed in Addendum 6a and Addendum 7a but for
purposes of completeness, here is one example of a valid
tested output function generated by the system:

def square_root(x):
 return math.sqrt(x)

4.2. Scope

It was immediately recognized that with this task,
problems of tractability could quickly become an issue;
specifically when all sequential variables are left
unbounded. While the design of the algorithm is meant to
help solve the problem of unbounded scope (while still
generalizing), there was yet more to consider prior to
starting the experiments.

Considering the potential that the input description given
could be any unknown size or length, and contain any
unknown number of words (presuming English language),
and the potential that the data types and number of
arguments could be any length, or any type – the problem
of tractability became obvious, along with the need for
limiting scope. See Addendum 1a for further intuition,
notes and informal analysis of this problem's tractability.

Fortunately, limiting the scope of the problem does not
limit the interesting results of the experiments; and the
scope limitations applied were simple in practice.

Intentional restriction of scope:

i. No function larger than 7 logic statements is
mutated by the “combinatorial” forest portion of
the algorithm (counting logic statements is
achieved prior to compilation by counting
variable assignments)

ii. No more than two words are used in the input
description statement (for example “square root”)

iii. The only functions considered are those that take
one variable (of any type) as an input, and then
return one variable (of any type) as an output

With these effective scope limitations in place, the
remainder of the proposed methods remain unrestricted.

4.4. Dataset and Infrastructure

After some exploration, the initial strategy of
using data acquired by GitHub was evaluated, and
appeared to be the best possible approach for getting useful
data. This of course required writing a robust and
somewhat “tricky” time consuming (albeit simple) web
scraper to avoid GitHub's many numerous rate limits and
tricks to avoid getting the scraper's i.p. banned from their
servers. The web scraping tool I wrote called scraper.py
is included with the source code files. It is used to search
GitHub for source code and then scrape all of the python
files it found. Along those lines, the dataset is built is as
follows:

The terms defined in Description which is defined as
“square root” using our running Square Root Example, is
sent into our GitHubScraper. GitHub is then searched for
python files that contain the search terms. Before GitHub
is searched, the GitHubScraper adds the terms “def” and
“return” to the search terms. Then GitHub is searched
only for python source files. This proved to be a highly
effective way to gather a focused, yet relatively diverse set
of source files guaranteed to include at least one function
that might use the return statement, along with the search
terms supplied by the user.

How to invoke and use GitHubScraper as a python Class:

import scraper
gs = GitHubScraper()
gs.scrapeGitHubForCode(searchQuery,

numPages,
saveDir)

The average source code scrape (after hitting the
unavoidable GitHub limit of 1000 source files per query)
results usually in well over ~1,000,000 raw tokens to parse
through by the feature extractor, and in our running
example for Square Root, resulted in extracting 559,887
sequential features used for training the Neural Network
that produced the results in the Addendum. After feature
extraction one single scrape results in a merged file size of
approximately 1.2 megabytes, and over 4,000 unique
expert focused variations of functions for training.

Both the scraper and the feature extractor take steps to
minimize noise as well as reduce any unintended biasing
of the model. For example, duplicate source files and
duplicate function definitions are never included, and
functions are extracted into a dataset that includes only
Python functions. Classes, local variables, and all other
random data outside top level python functions are handled
elegantly by the feature extractor, converting Class
methods into local functions in some cases, and discarding
data in others.

One final note regarding infrastructure: the baseline

algorithm baseline.py also uses the same GitHub
scraper for implementing retrieval of baseline
examples; to be explained in more depth later.

Figure 3a. Git Hub Scraper Shell Options

4.3. Datasets Explored / Considered

As described, the initial intuition for gathering the datasets
used in these experiments was to utilize source code
scraped from Git Hub, and train expert models that learn
from source code already written by (hopefully) expert
humans for a particular task. Despite this initial intuition,
prior to writing a robust scraper for scraping GitHub
several other more immediate and seemingly robust dataset
options were downloaded and explored during the
exploratory phase of this research.

First, a 38.8GB dump of all forum posts from Stack
Overflow. See Addendum 3a for more notes regarding the
Stack Overflow knowledge representation using EM and
LDA clustering experimentation. This initial strategy of
mapping knowledge representation to source code was
ultimately discarded (despite it being a very promising and
viable idea I'd like to explore further). There was just too
much noise / ambiguity in the results of the experiments
(and huge processing time); thus will not discussed further.

Another dataset considered was Python's own source repo
(including all user installed packages) which on a Linux
system is an incredibly simple task, with a short bash script
to simply merge into one massive training file. The
problem here was that, while this code is very well written,
it is not an expert at any one task, thus complicating the
process of feature extraction. Also, searching through this
code-base proved less fruitful than expected as many
functions are relatively low level and many make system
modifications that could be dangerous for system stability;
regardless of the ability to easily restrict permissions
granted to the executing thread.

Finally, the source code dataset acquired by downloading,
installing and searching through all available pip packages
found by running the command pip search * was also
considered and immediately discarded after seeing
numerous questionable package names such as: “crazy-
ball”, “artifacts”, and “blackhole”, just to name a few.

4.5. Evaluation

An important part of the algorithm is the evaluation and
scoring of the AST tree health after mutating tree
variations and building a collection of trees (which we will
refer to as a forest).

First, AST mutations that will not compile are
immediately pruned from the forest. Since the AST are
direct representations of the functional programming logic
generated by the system, the scoring of the AST directly
maps to scoring of the program code generated, as the
algorithm applies transformations between these
representations numerous times while evaluating the
output.

While the most logical and natural evaluation metric is
accuracy, running time is also an important factor. The
following evaluation methods are used by function scoring
method to evaluate, score and sort the AST trees. First, the
Levenshtein distance as an approximation of error e
(defined in Eq. 1a)

(Eq. 1a)

etru ,pred (t , p)={
max (t , p) if min(t , p)=0,

min{
etru , pred(t−1, p)+1
etru ,pred (t , p−1)+1
etru , pred(t−1, p−1)+1

(trut≠predp)

else .

Next, Ratcliff-Obershelp similarity (defined in Eq. 1b)

(Eq. 1b)

 ero(tru , pred)=
LCS(tru, pred)×2

|tru| + |pred|

Where LCS is known as the Longest Common
Subsequence problem, defined as the following recurrence
(defined in Eq 1c)

(Eq. 1c)

LCS (t i , p j)={
0 if (i=0)∨(j=0)
LCS(t i−1 , py−1) if t i=p j

longest (LCS (t i , p y−1), LCS (t i−1 , p y)) if t i≠ p j

Finally, a measure of the evaluation heuristic is calculated
using the sum of the Levenshtein distance with the
normalized Ratcliff-Obershelp similarity such that:
(defined in Eq 1e)

(Eq. 1e)

error = etru, pred (|tru| , |pred|) + (1.0−
e ro(tru , pred)

|tru|)

Lastly, an approximation of the cpu clock cycles required
to execute the function's logic is stored using python's
built-in Timer mechanism with a carefully scoped call to
python's literal eval() function to evaluate the current run-
time result in milliseconds, which is also added to the
Error heuristic for each function being evaluated. If the
prior error was zero (prior to adding the execution time)
then an additional bit is set to True on an associative array
index, signaling this was a perfect function, so the forward
passing results can still be sorted and prioritized by
minimizing for the fastest perfect function.

It should also be noted the evaluation mechanism that runs
eval() is designed to timeout after a certain number of
seconds. Any AST that takes longer than this time (set to
5 seconds in these tests) is permanently discarded, and so
are all mutated variations of that function. This effectively
removes ASTs that contain flawed logic such as infinite
recursion or infinite loops.

Examples of numerical output described by the equations
in this section can be seen in the results shown in
Addendum 5a, 6a, 7a , 7b , 7c, 7d which is listed in column
two of each Addendum page, and is labeled as ERROR.

5. Approach

Besides the advanced approach, which has been described
thus far, there were also two other methods used during the
evaluation of experiments: a baseline, and an oracle.

5.1. Baseline

The purpose of the baseline is to replicate a simple solution
to this problem that, while not being perfect, already exists
and is fast and simple to run.

The baseline algorithm in baseline.py used for these
experiments is meant to replicate the manual human search
process. It therefore simply runs a search on Git Hub,
scrapes the first page's results, and randomly returns one of
functions contained from the first page's search results. It
is very decidedly intelligent than a human, but mirrors the
manual process of randomly searching for code on the
internet in an acceptably accurate manner.

When executed three times, the baseline algorithm for our
Square Root experiment returned the following three
random results.

Example 1a. Three baseline square root functions:

def square_root(s):
i = 1
j = s
while (abs(j - i) > 0.001):
 print i, j
 j = (i + j) / 2.0
 i = s * 1.0 / j
return i

def square_root(x):
 return np.sqrt(x)

def square_root(a, x):
 y = (x + a / x) / 2
 return y

As we can see above, unfortunately all three of our
baseline results are deceptively not square root functions
that would work for our defined problem, despite their
name, as is often the case when randomly searching for
source code on Git Hub – it almost never just works out-
of-the-box. Thus, our baseline is acceptably modeling a
real-world experience.

Problems with the three example baselines:

The first baseline example returns only approximate
results.

The second baseline presumptuously appears to require
the installation of numpy while using an abbreviated
naming convention for numpy that would not even
work out-of-the-box if numpy was installed and
imported.

The third appears to intended as a utility function that
needs to be called iteratively.

The first baseline is particularly interesting, though, not
only because it is an approximate solution, but specifically
because of it's near-similarity to several other square root
functions found in the training data, as well as it's logical
relationship to the function learned in Addendum 6a.

5.2. Oracle

As mentioned, an oracle was also used to judge our results.
The purpose of the oracle is to know the exact best case
perfect answer. In the case of the Square Root running
example, the oracle was simply:

math.sqrt(InputExample)

One of the best things about these experiments is that the

oracle for all (and any) experiment is actually very simple
to determine. Since the goal of our system is to generate
python functions, we can actually run a massively large
variety of experiments, always knowing an oracle, by
simply choosing to run experiments for python scripts or
functions that already exist and produce known results.

In other words, the oracle for learning any arbitrary
preexisting function is simply the function itself! This is a
very encouraging attribute of this problem that I'm hoping
to exploit in a Reinforcement Learning framework for
future work.

5.3. Advanced Method

As already introduced, the proposed model and algorithm
is a hybrid ensemble method consisting of a framework
driven by several pre-trained “expert” generative
deep/recurrent neural networks trained on libraries of
source code. The trained neural networks are sampled to
“imagine” and generate data (for direct source code
predictions) which are sent through a feature extraction
and minor syntax repair process, and then used to form a
variety of valid Abstract Syntax Trees. The Abstract
Syntax Trees (AST) are stochastically combined into
“forests” using crossover and evaluated in a semi-
exhaustive manner using evaluation heuristics to sort and
prune unhealthy trees.

Figure 4a. Reference, Tree Crossover

The remaining healthy trees are transformed back into
python source code, round-tripping them one final time as
a checkpoint, and then passed into the compilation process,
and executed using the user supplied data.

The output of the logic execution process is evaluated
using the methods described in section: 4.5 Evaluation,
and then scores are updated and the trees are re-sorted
based on their new scores – this process also inherently
results in a pruning process of a variety of trees that
contain logic flaws but trick the static analysis heuristics.
If any tree scores a zero error, it is marked as a successful

answer, and after evaluation is finished, is returned to the
user.

See Addendum 8a for a representative example the trees
explored using our running Square Root example.

The delightful and surprising result of this process, when
neural networks are trained as experts on a domain specific
code base, is a model and algorithm that generate a
multitude of valid, exact functions that accurately reflect
the chosen oracle, and can also generalize (within their
domain knowledge) to predict new oracles.

5.4. Challenges, Unused Experiments

5.4.1 Challenges

There were many challenges encountered during this
research, one of the most challenging was simply time!
The following real-world challenges were anticipated early
on, and were in fact directly encountered, and then
overcome during the implementation of the methods
described. If these challenges had not been solved to
acceptable levels, the results accomplished here would not
have been possible:

Scraping and cleaning sufficient amounts of stable open
source software.

Effective feature extraction of the source code.

Use of additional models and algorithms to reason with
this data.

Effectively constraining the complexity and search-space
so as to generate usable general solutions within a
reasonable execution time.

Generating source code candidates that can be safely
compiled and are syntactically correct within the logical
programming language constraints, and are also human
readable and usable for practical software engineering
purposes.

Creating a system that generalizes functional syntactically
correct, logically correct source code.

Language features that posed specific challenges which
were overcome in a variety of general ways during the
feature extraction and/or generative prediction process:

• Untyped variables
• Dynamic variable type casting
• No return type in function definition
• Class methods
• Nested functions (functions inside of functions)
• Infinite Recursion and Infinite Loops

5.4.1 Unused Experiments

Numerous experiments were performed that resulted in
less than desirable results, some of which have already
discussed. For purposes of completeness, the following
non-exhaustive list is supplied:

LDA knowledge clustering from Stack Overflow Post data
(documented in Addendum 3a)

Using Nervana's neon deep learning library with random
sampling to numerous additional generative RNN models
including both LSTM and GRU models trained on source
code data data

Recurrent networks with 4, 5 and 6 layers including with
and without dropout, as well as numerous ratios of
test:training data during model training.

5.4.3 Specific Phenomena

To discuss specific phenomena, several key Python
language features are discussed and analyzed.

Consider a list of Python's built-in complex keywords,
functions and operators as primary differentiable language
features that exist within a function definition:

python_keywords = ['and', 'as', 'assert', 'break', 'class',
'continue', 'def', 'del' 'elif', 'else', 'except', 'exec',
'finally', 'for', 'from', 'global' … 'vars', 'zip']

multi_char_operators = ["==", ">=", "<=", "<>" ... "**"]

Now, consider the following single character ASCII
symbol representations as a means to compress the python
logic sequence during an encoding process in the feature
vector, prior to deep learning:

ü é â ä à å Ä Å É æ Æ ô ö ò û ù ÿ Ö º ┤ Á Â À © ╣ ║ ╗
╝ ¢ ¥ ┐ └ ┴ ┬ ├ ─ ┼ ã Ã ╚ ╔ ╩ ╦ ╠ ═ ╬ ¤ ð Ê Ë È

As an example, mappings are such that encoding and
decoding can easily be done using a dictionary such as:

keyword_map = {'and':u'Æ', 'as':u'É' ... 'class':u'Ã' }

Thus, a large bulk of Python 2.7's vocabulary (besides
variables, logic flow and single-character operators) can be
encoded, expressed and learned in ~100 dimensions of
symbolic logic space.

There are several goals for feature extraction and learning
based on the observed phenomena outlined. For one, we
wish to clearly differentiate symbolic language features
which represent logical flow, from things like language
variables and comments, both which need to be
differentiable as an important aspect for accurately
learning sequence data.

The goal is to exploit these facts as much as possible to
extract features which can be trained quickly, effectively
and as accurately as possible for code prediction.

5.4.4 A Note On Specific Phenomena of RNN Model

One-Hot vectors are used in the RNN LSTM model and
the learned language vocabulary is the vector space for
each layer. Here is an example of a One-Hot, using python
operators as the features for purposes of clear explanation.
In this example, for simplicity, we show an eight
dimensional vector space to represent the one-hot:

 In practice, the actual vector space was much much larger,
dependent on the size of the total language vocabulary
used and the encoding methods used in the feature
extractor.

5.4.5 A Note On The Specific Phenomena of Grammar

Python has a very well defined language definition; like
most modern languages, Python uses Backus–Naur Form
grammar (BNF). The BNF grammar definition is used by
Python's compiler to enforce source code syntax and
grammar constructs. Considering the language grammar is
so clearly well defined, and can be directly validated
through the compilation process (which is performed
numerous times in our algorithm) it should be possible,
given enough training data, for a model to learn all of the
grammar rules perfectly. We will leave this for future
work, but it is interesting phenomena to note.

6. Data and Experiments

After a variety of tests and model / algorithm refinements,
the following real-world experiments were performed.
Each experiment is shown here using the established
conventions to describe the inputs given to the generative
algorithm, as previously outlined in Section 4 Task
Definition. Results listed for each experiment should be
reviewed in greater detail in Addendum 5a, 6a, 7a , 7b , 7c, 7d

Addendum 5a:

Description = 'sort'

Definition = '"def sort(seq):"'

InputExample = ['ll', 'gg', 'aa', 'jj', 'cc', 'ee',
'hh', 'dd', 'p', 'o', 'm', 'bb',
'kk', 'ff', 'n', 'ii', 'z', 'qq']

CorrectAnswer = ['aa', 'bb', 'cc', 'dd', 'ee', 'ff',
 'gg', 'hh', 'ii', 'jj', 'kk', 'll',

 'm', 'n', 'o', 'p', 'qq', 'z']

Addendum 6a, 7a:

Description = 'square root'

Definition = '"def square_root(num):"'

InputExample= 262144

CorrectAnswer = 512

The following three results contained in Addendum 7b 7c
and 7d generalized their results using the square root
training data with no additional model or algorithm tuning:

Addendum 7b:

Definition = '"def squared(num):"'

InputExample= 512

CorrectAnswer = 262144

Addendum 7c:

Definition = '"def half(num):"'

InputExample= 512

CorrectAnswer = 256

Addendum 7d:

Definition = '"def double(num):"'

InputExample= 512

CorrectAnswer = 1024

Operator One-Hot

= 00000001

- 00000010

* 00000100

+ 00001000

> 00010000

< 00100000

. 01000000

/ 10000000

7. Analysis

7.1. Interpreting Results

To review and derive meaning from the results achieved,
browse the Addendum data included. The first two most
interesting and encouraging results accomplished are that
first, in all cases the model was able to predict an answer
that is equivalent to the Oracle and second the model was
able to generalize to create new, related functions without
needing new training data (ie the model for “Square Root”
was used to generalize squared, divide by two, and a
doubling function).

While this all seems almost unbelievably impressive at
first, this behavior is certainly only possible due to two
important attributes:

1. The scope limitations previously described
were effectively enforced (disallowing us to generalize the
current method to larger functions)

2. The “unreasonable effectiveness” of the deep
recurrent lstm neural network was made even more
effective through targeted feature extraction combined
with highly focused “expert” training on the specific topic
that is wished to be learned (for example “square root”).

While on the surface this may appear to be nothing more
than a simple search, it is very promising to see the
generalization possible even in these early preliminary
examples.

For the remainder of this section, we will use our running
example of Square Root, since it is the most interesting
result achieved. For additional results, please refer to the
Addendum. The interpretation of results for the Square
Root example should generalize to all other results
currently possible with our system.

By far, the most impressive result can be seen in
Addendum 6a – the neural network appears to have
learned Newton's method for finding the square root of any
number:

def square_root(a):
 x = (a / 2.0)
 epsilon = 0.001
 while True:
 print x
 y = ((x + (a / x)) / 2)
 if (abs((y - x)) < epsilon):
 break
 x = y
 return x

At first, my assumption was that this was due to over-

fitting; but after searching through all of the training data, I
realized it was definitely more of an interesting phenomena
caused by a combination of many variations of the same
functional logic, creating a statistical bias towards
predicting these unique sequences – combined with the
absolute magical properties of deep neural networks. My
best explanation of these results, after spending much time
analyzing the data and re-running several tests can be best
explained by the multiple re-occurrence of several
variations of the same, or a very similar variation of this
algorithm:

def square_root(a):
 x = a / 2.0
 y = x
 while True:
 y = (x + a / x) / 2.0
 if abs(y - x) < sys.float_info.epsilon:
 break
 x = y
 return x

def square_root(a):
 x = 10
 while True:

 y = (x + a / x) / 2
 if abs(y - x) < 0.000001:
 break
 x = y
 return x

def square_root(a):
 x = a / 2.0
 epsilon = 0.001
 while True:
 print x
 y = (x + a / x) / 2
 if approx_equal(y, x, epsilon):
 break
 x = y
 return x

def approx_equal(a, b, limit):
 if abs(a - b) < limit:
 return True

Presumably this phenomenon was caused by human beings
copy and pasting the function and then modifying it? Or
perhaps just inherent logic contained within a function that
can only contain a restricted number of combined logic
sequences, which are represented enough in the data in
order for the neural network to learn them? Now that
would be really cool – and I think that's what has happened
here based on observation of the data.

Several near variations existed in the training data, but
there was nothing that represented an exact duplicate of
this function line for line! There wasn't even a function
that had two lines in a row that were exact duplicates.

It appears the learning algorithm generalized syntax and
logic sequences to generate a generalization of this
complex function. This was, in all honesty, a completely
unexpected and delightful result.

Based on the results reported elaborated here, as well as in
great detail throughout this paper and further in the
Addendum, I can say with some level of confidence that
we can preliminarily conclude – yes, it appears it is
possible for a Deep Recurrent Neural Network using Long
Short Term memory gates to learn the sequence data
needed for keyword prediction of logical source code – at
least effectively enough for the output to be sent to
additional search algorithms in order to achieve exciting
and seemingly generalizable source code predictions.

7.2. Error Analysis

 Since this is a multi-faceted system with several
distinct stages, several distinct stages of error analysis
were also performed.

First, test error was measured and attention was paid to
avoid over fitting during the refinement, tuning, and
development of the Deep Recurrent LSTM Neural
Network model during the pre-training process. More
detail can be seen in Addendum 4a

Next, Error measures of source code predictions at runtime
can be estimated using the previously described Section
4.5 Evaluation – but first, an interesting error can be
observed in the log files (supplied with the code and data
sets as part of the project).

During the feature extraction used to decode the generative
neural network data at runtime, a certain percentage of
code is generated that is total garbage and can not pass a
simple static analysis step. The way to identify the
percentage of error is to notice the percentage of data
skipped, as output by the log, during the feature extraction
process:

Percent: [] 0%
Percent: [##] 3%
Percent: [###] 7%
Percent: [#####] 10%
Percent: [#######] 13%
Percent: [########] 17%
Percent: [##########] 20%
Percent: [############] 23%
Percent: [#############] 27%
Percent: [###############] 30%
Percent: [#################] 33%
Percent: [##################] 37%
Percent: [####################] 40%
Percent: [######################] 43%
Percent: [#######################] 47%
Percent: [#########################] 50%
Percent: [###########################] 53%
Percent: [############################] 57%
Percent: [##############################] 60%
Percent: [################################] 63%
Percent: [#################################] 67%
Percent: [###################################] 70%
Percent: [#####################################] 73%
Percent: [######################################] 77%
Percent: [##] 80%
Percent: [##] 83%
Percent: [###] 87%
Percent: [###] 90%
Percent: [###] 93%
Percent: [##] 97%

This is ascii data is an interesting artifact of the feature
extraction progress reporting mechanism after redirecting
standard output into a text file for documentation purposes
– regardless, it is a very interesting error rate to notice.
This is theoretically an error that represents total noise in
the model, since it is outputting data that was previously
successfully learned using the feature extractor but when
sampled, can not be processed by the feature extractor.
This error range is reasonably low, ranging between 2% to
4% depending on the data and samples requested – but
could be an area to explore as a window to improving
overall predictions. Finally, Error measures using the
Section 4.5 Evaluation heuristics are analyzed. Since
approximate execution time is inherently included in these
scores, it is important to understand the meaning of these
approximate Errors scores – these are scores representing
the errors of syntactically valid functions that contain some
logic flaw causing them to return imperfect data.

Addendum 5a Max Sampled Error: ~110

Addendum 6a, 7a Max Sampled Error: ~15

Addendum 7b Max Sampled Error: ~20

Addendum 7c Max Sampled Error: ~12

Addendum 7d Max Sampled Error: ~15

It's interesting to notice that the maximum sampled error
decreases with the size complexity of the required output.
This makes sense, even though the error metrics can not be
directly compared as they are not normalized – the lower
error rates represent shorter sequence data being compared,
and in practice, with our data used, does represent less
actual error despite the lack of normalization.

Also note that this is an estimation of error and not exact
error – thus meaning that there is some measure of error
contained in the method used to measure error. The

0

1

2

3

4

5

Error

primary problem with the current sequence edit-distance
and sequence matching based error metric is that it
serializes all data into string prior to comparison. This is
robust to many cases that occur in real world
circumstances, such as comparison of sequential data of
different data type (thus effectively handling dynamic
variable typing and variable type mutations). This method
is flawed in the very simple example of measuring the
distance between a two floating point numbers such as
comparing the number 1.0 with
1.000156347677462437631. While this is a very
small true distance, the error measured by the current
method results in an error approximately greater than 20!
This would definitely result in the wrong optimization
results in several circumstances – but of course this
problem is easily correctable; yet it is worth mentioning
because it currently exists in this experimental, imperfect
implementation of our proposed method.

8. Literature and Attributions Review

While much interesting literature on sequence learning,
automated programming, modern software architectures,
and a variety of other topics in artificial intelligence and
other fields that create software designed to create
software, nothing was found that solves the specific
problem as proposed – i.e. using Deep Learning for
Inductive Programming.

There are many pieces of literature that could be discussed
and elaborated upon in this section (see section:
References), there are three primary areas worth
mentioning, or further discussing in detail. One area is
Genetic Programming, the next is Inductive Programming,
and the last are two specific papers [11] and [13] along
with a blog post and open source library that are definitely
of high importance, and are discussed last.

First, while researching methods, many papers on the
topics of Genetic Programming were reviewed (far too
many to cite, so Koza's pioneering work is cited for this
domain [4]). As mentioned numerous times, Genetic
Programming was a source of reference for the project and
implementing more features from Genetic Programming
paradigm is something planned for future work; it is worth
mentioning in this section but probably worth discussing in
further detail here.

Second, a large number of papers on Inductive
Programming were reviewed (the best one is a survey and
is cited [2]). It is interested in to note that in [2] the author
contrasts Inductive Programming with Neural Networks
models in a competing context, rather than considering
them as a generative method for Inductive Programming.
This is most likely due to the major strides in progress that
Neural Network models have made recently, as this paper
was from 2010 – regardless, this was an interesting thing
to note, especially since there is literature from the
Inductive Programming sub-field [3] “Learning Logic

Programs with Neural Networks” from 2001, where the
authors leave the first-order theory refinement using neural
networks as an open problem.

Lastly, and most importantly – there were two papers that
were published approximately within the last year that
were particularly inspiring for this work:

Zaremba, Wojciech, and Ilya Sutskever. "Learning to execute."
arXiv preprint arXiv:1410.4615 (2014).

The learning to execute paper was a very large motivator
for approaching this problem. The LSTM neural network
model used in these experiments is exactly the same model
as was used in the learning to execute paper. The primary
difference between the learning to execute approach, and
our approach, is that Learning to execute tries to solve the
problem of predicting the result of executing a function,
given sequences of logic – in other words, it is trying to
predict the results of that compiled execution will generate,
given source code. Where as our approach trains a model
to predict the source code, this paper trains a model to
predict the source code's compiled results. Of course the
two have much in common, and could be looked at
interchangeably, the utility of the results differs
dramatically. Further, our model and process includes the
additional AST mutation process as described whereas
Learning to execute attempts to solve the problem with
only Deep Learning.

It has been widely speculated and discussed in recent
literature and within the deep learning community (and is
informally accepted as true) that a finite-sized RNNs is
Turing complete – despite there also being an apparent
lack of formal proof that this is true. In fact this idea was
one of motivations behind the research that has been
presented in this paper. The following literature was very
exciting in this regard:

Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural Turing
Machines." arXiv preprint arXiv:1410.5401 (2014).

Further, there is an incredibly great blog post by Andrej
Karpathy titled “The Unreasonable Effectiveness of
Recurrent Neural Networks” where he uses the Linux
kernel source (amongst many other examples) to train an
LSTM:

Karpathy, Andrej. "The Unreasonable Effectiveness of
Recurrent Neural Networks." Hacker's Guide to Neural
Networks. N.p., 21 May (2015). Web.

Andrej Karpathy deserves extra mention here, because not
only was his blog post excellent, his lua / torch based
LSTM RNN library produced the best results in my
experiments, and his library was ultimately used to build,
train and create the generative neural network used in this
paper, which implemented the RNN model used in the
Learning to execute paper. If you see Andrej, tell him
thank you for his excellent open source contributions!

The following paper has not yet been published but it looks
incredibly interesting and valid – I discovered it while
working on these experiments, and have not yet had a
chance to fully read and digest it but am planning to as
soon as possible:

[15] Zaremba, Wojciech, and Ilya Sutskever. "Reinforcement
Learning Neural Turing Machines." arXiv preprint
arXiv:1505.00521 (2015).

9. Limitations and Future Work

Despite these isolated successful results, it is the strong
feeling of the author that the approaches proposed herein,
albeit powerful and exciting, are in their most infant form;
and there is yet much work to be done to explore,
experiment and develop a fully realized system with this
approach

The current implementation of the algorithm is lacking
several planned capabilities (such as ϵ-greedy search
using source code created from random generative BNF
grammar) – these capabilities were initially excluded
during practical implementation for the purposes of
controlled experimentation; and while this capability
would still be a great feature to add, in the experiments
presented here, random search outside of the knowledge
learned by the deep neural network does not appear to be
needed! Only the leaves and branches the functions
predicted by the neural network were used to create the
AST forest. There is much refinement that could be added
to this part of the model, including modeling the steps as a
Markov Decision Process for Reinforcement Learning of
generalizing successful code mutation decisions to further
reduce the number of mutations created in the tree to forest
process.

It would also be desirable to experiment with extending the
forest model with a full Genetic Programming
implementation that can run as a stop-gap mechanism if no
solution is found, similar to the idea of using an epsilon
greedy search method to introduce random branches into
the search process when needed.

Finally, the most important planned work includes
exploring more advanced RNN models such as attention
based deep RNN models that are currently achieving state-
of-the-art in Machine Translation, and apply them to the
sequence prediction problem for more robust code
prediction. Ultimately, the goal is to build the entire
framework as a Markov Decision Process and use
Reinforcement Learning with a hybrid of Deep Q Learning
and the Tree / Forest and Genetic Programming techniques
already discussed. Once that is stable, the plan is to
attempt to train a very large ensemble of fuzzy experts that
can accurately learn all known available Python functions,
language grammar, and syntax as the end game. That
would be a truly incredible accomplishment.

10. References

[0] Balzer, Robert. "Why haven't we automated programming."
Proceedings of the FSE/SDP workshop on Future of software
engineering research. ACM, 2010.

[1A] Barstow, David R. "An experiment in knowledge-based
automatic programming." Artificial Intelligence 12.2 (1979): 73-
119.

[1B] Summers, Phillip D. "A methodology for LISP program
construction from examples." Journal of the ACM (JACM) 24.1
(1977): 161-175.

[2] Kitzelmann, Emanuel. "Inductive programming: A survey of
program synthesis techniques." Approaches and Applications of
Inductive Programming. Springer Berlin Heidelberg, 2010. 50-
73.

[3] Rodrigo Basilio Gerson Zaverucha Valmir C. Barbosa,
“Learning Logic Programs with Neural Networks” Inductive
Logic Programming, 11th International Conference, ILP (2001)

[4] Koza, John R. Genetic programming II: automatic discovery
of reusable programs. MIT press, (1994)

[5] Liaw, Andy, and Matthew Wiener. "Classification and
regression by randomForest." R news 2.3 (2002): 18-22.

[6] Okuda, Teruo, Eiichi Tanaka, and Tamotsu Kasai. "A method
for the correction of garbled words based on the Levenshtein
metric." Computers, IEEE Transactions on 100.2 (1976)

[7] Ratcliff, John W., and David E. Metzener. "Pattern-matching-
the gestalt approach." Dr Dobbs Journal 13.7 (1988): 46.

[8] Oliphant, Travis E. "Python for scientific computing."
Computing in Science & Engineering 9.3 (2007): 10-20.

[9] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term
memory." Neural computation 9.8 (1997): 1735-1780.

[10] Graves, Alex. "Generating sequences with recurrent neural
networks." arXiv preprint arXiv:1308.0850 (2013).

[11] Zaremba, Wojciech, and Ilya Sutskever. "Learning to
execute." arXiv preprint arXiv:1410.4615 (2014).

[12] Karpathy, Andrej. "The Unreasonable Effectiveness of
Recurrent Neural Networks." Hacker's Guide to Neural
Networks. N.p., 21 May (2015). Web.

[13] Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural
Turing Machines." arXiv preprint arXiv:1410.5401 (2014).

[14] Kaiser, Łukasz, and Ilya Sutskever. "Neural GPUs learn
algorithms." arXiv preprint arXiv:1511.08228 (2015).

[15] Zaremba, Wojciech, and Ilya Sutskever. "Reinforcement
Learning Neural Turing Machines." arXiv preprint
arXiv:1505.00521 (2015).

[16] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh.
"A fast learning algorithm for deep belief nets." Neural
computation 18.7 (2006): 1527-1554.

ADDENDUM 1 a

Notes on:
Computational Tractability for a Theoretically NP Hard Problem

The general problem of finding an arbitrarily large function in an arbitrarily large sequential symbolic
space with little to no knowledge of which operations to perform is undoubtedly an NP hard problem.
If the symbols used to build the function are restricted to some known dimensionality, this reduces the

problem to an knowable NP problem as this can be veritably computed in O(ns) time complexity
where N are the total number of operations the function performs and s is the total number of all
arbitrary operations that can be performed sequentially (i.e. total number of all possible sequential logic
combinations existing, such as: variable assignments, condition statements, function calls, etc).

The algorithm implemented herein, which was used to search and find the functions as noted in the
results (sort, square root, etc) had the space constrained in a variety of ways. First, it was limited
through focused learning and training with a neural network, trained on a data set that had a very high
probability of containing an answer based on rudimentary keyword search of the user's intent. Second,
the algorithm used a variety of semi-exhaustive but not fully complete random / shuffled permutations
and restricted Cartesian product combinations to find (and eliminate) variable and function
combinations (effectively limiting k) as well as added heuristics for scoring functions so that functions
with less error are searched first, all to make finding a solution tractable.

Without employing such methods, an exhaustive unbounded search of logic sequences even within the

constraints of 11 logical sequences results in a worst case brute force search expansion of O(nn)
where n is the number of logical operations expanded to 1111 combinations; over 285.3 billion
sequential search operations. The resulting computational resources required for this exhaustive naive
approach appear to be sub-quadratic in a real-world test case as can be seen below, yet still uses an
unacceptable amount of compute resources. This experiment was killed just before physical memory
limits of 32GB hit, at peak CPU usage (64 bit Linux, 8 processors @ 4.00Ghz) after only about ~1
minute of computation (as shown in diagram below, a real screen capture of computational resources
utilized while running this first test).

Thus, an approach to circumvent and begin to solve this issue of intractability was devised herein.

ADDENDUM 2 a

Algorithm and Model Overview (larger view format)

The pre-trained Neural Networks are serving a dual purpose: both as intelligent symbolic logic
sequence predictors, as well as effectively limiting the dimensionality of the AST's potentially
otherwise very large unknown possible logical tree powerset search space.

See diagram below for overview of the proposed run-time (after pre-training) generative process:

ADDENDUM 3 a

Exploration : Stack Overflow for “Expert Code Topic” Knowledge Clusters
Using EM based clustering with Latent Dirichlet Allocation

An initial idea to build the learning model from data was to map clusters of knowledge onto clusters of code and
then use those mapped clusters to train a fuzzy ensemble of RNNs. Thus, LDA clustering of domain expert
knowledge was explored for potential identification of concentrated expert topics / domain knowledge that could
be used to search, scrape and train clustered ensembles expert “coder” generative deep neural networks. I was
looking for a way to automatically map the vast knowledge of the Stack Overflow domain to raw source code.
The S.O. domain data (+38.8GB of posts) was parsed (to remove xml tags and sematic stop words) and was then
tokenized and statistically explored. It proved quite interesting but too noisey and very time consuming. Below,
a visualization of a batch of semantic knowledge clusters I trained can be seen (zoom in):

Note on above image: I used python and the gensim library with sent2vec and doc2vec along with nltk, sklearn
and matplotlib to produce the clustering and visualization. After building a custom corpus and training the LDA
model, I followed suggestion in the nltk library to use PCA first to reduce the multidimensional clusters to ~50
dimensions, then used TSNE to further reduce it to 2 dimensions before then showing the scatter plot as plt data.

Conclusion: While this exploration process proved very informative, the semantic data space was very huge,
and quite noisey and thus implementation of an automatically trained ensemble of deep domain expert
generative neural networks derived from this data will be left for exploration in future work once the knowledge
space to domain space mapping is more well understood. I do believe there is a viable solution to be found here.

ADDENDUM 4 a

Training: Deep LSTM Neural Network Test Prediction Error per Training Epoch
(using 10% of training data as test data)

Prior to tuning parameters and layers of RNN model:

After experimentation, adding more data, tuning parameters of the model & increasing number of layers:
Final acceptable test error of deep recurrent models fell between ~0.2 and ~0.4 for different datasets

0

0.5

1

1.5

2

2.5

3

3.5

4

Error

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Error

ADDENDUM 5 a Results: sort (part1)

Successful
(0 error, passed user supplied test
data)
Oracle= [].sort()
Interesting valid functions constructed
successfully performing the sort
operation

Unsuccessful
(error >0, failed user supplied test data)

Some interesting syntactically valid (but
unsuccessful / logically flawed) functions
constructed

def sort(a):
 return sorted(a)

def sort(alist):
 return sorted(alist)

def sort_by_name(my_class):
 a = sorted(my_class)
 return a

def __str__(sequence):
 return sorted(sequence)

def toSort(alist):
 return sorted(alist)

def sort_by_mark(my_class):
 return sorted(my_class)

def sort_files(seq):
 return sorted(seq)

def sort(array):
 '\n Argument ant listTon
sorted countting ore'
 return sorted(array)

def sort(lod):
 return sorted(lod, key=(lambda x: lod[1]),
reverse=True)
[AN ERROR OF: 40.9223300971]

def bubble_sort(sorted_list):
 for i in range(1, len(sorted_list)):
 sorted_list = sorted_list
 return sorted_list
[AN ERROR OF: 40.9223300971]

def sort_by_name(l):
 return sorted(l, reverse=True)
[AN ERROR OF: 44.640776699]

def pop(self):
 return self.pop()
[AN ERROR OF: 108.252336449]

def __repr__(self):
 return 'Sorted'
[AN ERROR OF: 109.459459459]

def merge(right):
 SortedList = []
 (-1)
 if (len(right) <= 1):
 return i[0]
[AN ERROR OF: 110.626168224]

def sort_by_name(k):
 return
[AN ERROR OF: 110.626168224]

ADDENDUM 5 b Results: sort (part 2)

Examples of non-mutated (and) discarded functions
Examples of valid functions the algorithm constructs, validates, then parses, forms into an
Abstract Syntax Tree, deconstruct into independent variables, and then recognizes the presence
of “long” logic sequences (a variable length currently set to no greater than 7) during the
combination process, and skips combining / mutating for these functions in order to achieve
tractability. These long logic sequence functions are not discarded entirely, just not combined:

Example one contains multiple functions inside of functions (and logic errors):

def sort_by_mark(my_class):
 alist = sorted(items, key=(lambda l: lea((lambda : x))))

 def sort(self, sorted_items):
 return sorted_items.heappop()

Example two, contains loops with nested conditional branching (and logic errors):

def insertionSort(array):
 for i in range(1, right):
 if ((len(left) > 0) and (len(right) > 0)):
 if (left[i] < right[0]):
 sorted_stack.append(c)
 else:
 return False

ADDENDUM 6 a Results: square root (part 1) (***wow!)
Here's one of the coolest examples of a valid formed function (with low error) that failed the exactness
of the final test, but resulted in a truly surprising result: The deep recurrent lstm neural network
appears to have learned Newton's method for finding the square root of any number!

def square_root(a):
 x = (a / 2.0)
 epsilon = 0.001
 while True:
 print x
 y = ((x + (a / x)) / 2)
 if (abs((y - x)) < epsilon):
 break
 x = y
 return x
[AN ERROR OF: 21.0001101494]

When this function is tested, it actually prints it's results along the way, to my astonishment:

square_root(262144)
65537.0
32770.4999695
16389.2496796
8202.6222773
4117.29041888
2090.47973814
1107.93935264
672.272180594
531.104741066
512.343615019
512.000115227
512.0001152266542

Note: At first, my assumption was that this was rote learned; but after searching through all of the
training data, while several near variations existed, it wasn't possible to find an exact duplicate of this
function line for line! It appears the learning algorithm generalized syntax and logic sequences here!

Newton's method?! The above code appears to be something equivalent to or very similar to
Netwton's iterative method for solving the square root of any number via recurrence. While the learned
function is not recursive, it's logic is equivalent to a recurrent function. Wolfram Alpha defines
Newton's iteration as an application of Newton's method using recurrence that converges quadratically
as limk→∞ x k and is defined as follows:

x k+1=
1
2
(xk+

n
xk

)

This very closely mirrors the function learned by the neural network!

ADDENDUM 7 a Results*: square root (part 2)

 Successful !
(0 error, passed user supplied test data)
Oracle = math.sqrt
Interesting valid functions constructed
successfully performing square root.
 * Read the doc-string of that last one! The
Ai is trying to tell us something very deep :-)

Unsuccessful
(error >0, failed user supplied test data)

Some interesting syntactically valid (but
unsuccessful / logically flawed) functions
constructed. Look at the one that raises
an exception (it is valid logic!):

def cube_root_improve(a):
 return math.sqrt(a)

def square_root(x):
 return math.sqrt(x)

def root_mean_square(a):
 return math.sqrt(a)

def find_sqrt(x):
 "\n Avime square root is the positive
integers, whine float an the square root is to
be computed.\n Returns:\n The square
root of x.\n '''\n assert x >= 0, 'x must
be non-negative, not' + str(x)\n assert
epsilon > 0, 'epsilon must be positive, not' +
str(epsilon)\n low = 0\n high = max(x,
1.0)\n guess = (low + high) / 2.0\n ctr =
1\n while abs(guess ** 2 - x) > epsilon and
ctr <= 100:\n if guess ** 2 < x:\n
low = guess\n else:\n high =
guess\n guess = (low + high) / 2.0\n
ctr += 1\n assert ctr <= 100, ''\n print
'The square root excain boof tepsicance the
square root of the first matrinuge hen
eloghacis:\n The square root of x.\n
'''\n assert x >= 0, 'x must be non-negative,
not' + str(x)\n assert epsilon > 0, 'epsilon
must be positive, not' + str(epsilon)\n low =
0\n high = max(x, 1.0)\n guess = (low +
high) / 2.0\n ctr = 1\n while abs(guess **
2 - x) > epsilon and ctr <= 100:\n if
guess ** 2 < x:\n low = guess\n
else:\n high = guess\n guess =
(low + high) / 2.0\n ctr += 1\n assert
ctr <= 100, 'Iteration count exceeded'\n
print 'Bi method format.\n >>> from
pyromaths.classes.SquareRoot import SquareRoot\n
>>> SquareRoot([5, 8], [1,
45]).EstReductible()\n False\n >>>
SquareRoot([5, 8], [1, 7]).EstDecomposable()\n
False\n :rtype: int\n "
 return math.sqrt(x)

def subtract(a):
 return (a - a)
[AN ERROR OF: 13.0000779629]

def dist(s):
 x = (s ** s)
 return 0
[AN ERROR OF: 13.0116910934]

def square_root(a):
 x = (True / 2.0)
 while a:
 return
[AN ERROR OF: 14.0000739098]

def is_square(n):
 root = int((n ** 0.5))
 return (n == int(root))
[AN ERROR OF: 15.0001130104]

def fib(n):
 if (n < 0):
 raise ValueError('square root not
defined for negative numbers')
 n = int(n)
 if (n == 0):
 return 1
[AN ERROR OF: 14.0001008511]

def convergents(sequence):
 if int(True):
 return True
[AN ERROR OF: 14.0000879765]

*See all results that were echo'ed in the shell in the file supplied with code:
square_root_ouput_log.txt

ADDENDUM 7 b Results*: squared (generalized from square root training data!)
Successful
(0 error, passed user supplied test
data)
Oracle = **2
All valid functions successfully
generalizing from square root
training data to create “squared”
functions!

*Again, cool yet strange doc-string!

Unsuccessful
(error >0, failed user supplied test data)

Some interesting syntactically valid (but
unsuccessful / logically flawed) functions
constructed

def multiply(a):
 return (a * a)

def df(x):
 return (x ** 2)

def dor_(x):
 return (x ** 2)

def cubeRoot(n):
 'Determines if n is arrayyyicce
digital number'
 return (n * n)

def cube_root_iter(guess):
 return average(guess, (guess - guess))
[AN ERROR OF: 11.3637112271]

def improve(guess):
 return average(guess, (float(guess) /
guess))
[AN ERROR OF: 11.3637133728]

def square(number):
 return (number ** 1)
[AN ERROR OF: 12.7778776752]

def isSquare(n):
 root = int(math.sqrt(n))
 if ((root * root) == n):
 return True
[AN ERROR OF: 16.0000619888]

def square_root(x):
 return math.sqrt(x)
[AN ERROR OF: 20.6667386691]

*See all results that were echo'ed in the shell in the file supplied with code:
 squared_ouput_log.txt

ADDENDUM 7 c Results*: double (generalized from square root training data!)
Successful
(0 error, passed user supplied
test data)
Oracle = *2
This time three functions were
created. Interestingly they all
perform the add operation and
none multiply by two, which I
had (arbitrarily) designateed
as the Oracle.

Again, this was generalized
from the square root training
data!

Unsuccessful
(error >0, failed user supplied test data)

Again, many very interesting syntactically valid
(logically flawed) but really intriguing functions
constructed:

def add(x):
 return (x + x)

def df(x):
 return (x + x)

def multiply(x):
 return (x + x)

def triangle_rms(a):
 '\n Returns L2 norm of the given matrix (while
petate-1.\n >>> square_root = int(4 ** 2\n '
 if (a < 0):
 raise ValueError('square root not defined
for negative numbers')
 r = int(a)
 return a
[AN ERROR OF: 7.28584708486]

def in_thas_inverse(can):
 for can in xrange(1, 1001):
 can += 1
 return (can ** 0)
[AN ERROR OF: 9.00008010864]

def iterate(x):
 return average(x, (float(x) / x))
[AN ERROR OF: 12.7778478728]

*See all results that were echo'ed in the shell in the file supplied with code:
double_ouput_log.txt

ADDENDUM 7 d Results*: half (generalized from square root training data!)
Successful
(0 error, passed user supplied test
data)
Oracle = /2
This time only two functions were
created, (clearly mutations of the
same imagined function) but again,
this was generalized from the square
root training data!
Syntax is a bit unusual but is valid
and is also equivalent to the oracle!

Unsuccessful
(error >0, failed user supplied test data)

Again, many very interesting syntactically
valid (logically flawed) but really intriguing
functions constructed:

def newpondix(y):
 return ((+ y) / 2)

def newpondix(x):
 return ((+ x) / 2)

def add(a):
 return (+ a)
[AN ERROR OF: 9.66671983401]

def half(True):
 if is_prime(True):
 return True
[AN ERROR OF: 14.0000519753]

def is_prime(n):
 'Finds a primitian une prime or
close nimger\n :param errors: a
number '
 if (n == 0):
 x = (n + 1.5)
 return (+ 1)
[AN ERROR OF: 13.0000519753]

def squareRoot(file):
 return (None is None)
[AN ERROR OF: 14.0000519753]

def improve(up):
 return (math.factorial(up) ==
math)
[AN ERROR OF: 15.00009799]

*See all results that were echo'ed in the shell in the file supplied with code:
half_ouput_log.txt

ADDENDUM 8 a

Representative examples of ASTs during the “Combinatorial Forest” portion of the generative
algorithm. A large variety of Abstract Syntax Trees are created indiscriminately for the initial
AST “forest” exploration process. Varying degrees of health are assigned to the trees during the
combination, mutation and selection process.

Note that the current algorithm supports the creation of combinations and mutations of many multiples
of functions all with the simultaneously with the same function name declaration. This was achieved
through careful scoping during compilation process as well as targeted creation / deletion of code
objects:

Infinitely unhealthy, this tree was
eliminated completely by

algorithm's infinite loop detection
and by the execution time scoring

component:

Midly unhealthy, this tree is
down-scored early during

scoring and later permanently
discarded:

Very healthy, this tree very
efficiently computes the

desired result, and actually
generalizes by using the

Oracle to do so!

def square_root(a):
 x = (a + 0.01)
 while True:
 if (True == 0):
 return 0

def square_root(a, x):
 if (x == 0):
 return 0

def square_root(x):
 return math.sqrt(x)

	Abstract
	1. Introduction
	2. Algorithm and Model Overview
	3. A Promising and Novel Method
	4. Task Definition
	4.1. Real World Running Example
	4.2. Scope
	4.4. Dataset and Infrastructure
	4.3. Datasets Explored / Considered
	4.5. Evaluation

	5. Approach
	5.1. Baseline
	5.2. Oracle
	5.3. Advanced Method
	5.4. Challenges, Unused Experiments

	6. Data and Experiments
	7. Analysis
	7.1. Interpreting Results
	7.2. Error Analysis

	8. Literature and Attributions Review
	9. Limitations and Future Work
	10. References

